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Problem and main result

Let us consider the class of degenerate Ornstein-Uhlenbeck operators in
RN :

A = div (Ar) + hx ,Bri =
N

∑
i ,j=1

aij∂2xi xj +
N

∑
i ,j=1

bijxi∂xj ,

where A and B are constant N �N matrices, A is symmetric and positive
semide�nite. The evolution operator corresponding to A,

L = A� ∂t ,

is a Kolmogorov-Fokker-Planck ultraparabolic operator.
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Example

Kolmogorov, 1934. For N = 2, (v , x , t) 2 R3,

∂2vvu + v∂xu � ∂tu = 0; here A =
�
1 0
0 0

�
;B =

�
0 1
0 0

�
This ultraparabolic operator possesses a fundamental solution smooth
outside the pole.

Example

Backword Kolmogorov equation for the probability density p (v, x, t) of a
particle of position x, velocity v, mass m, suspended in a �uid of viscosity
β, temperature T , subject to Brownian motion (k =Boltzmann const.)

∂p
∂t
+ hv,rxpi � β hv,rvpi+

βkT
m
divv (rvp) = 0;

here A =
� βkT
m I3 03
03 03

�
;B =

�
I3 �βI3
03 03

�
.
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More examples and remarks
Other examples of equations in this class arise as

I Kolmogorov-Fokker-Planck equations corresponding to systems of
stochastic O.D.E.�s modeling several phisical situations (e.g. models of
di¤usion through potential barriers, in chemical reactions or in electric
conduction in ionic crystals; laser physics; �ltering theory...)

I Black-Scholes equations in �nance, for the pricing of Asian options
I (Nonlinear) Boltzmann-Landau equation in the kinetic theory of gases

n

∑
j=1

xj ∂xj+nu + ∂tu =
n

∑
i ,j=1

∂xi
�
aij (�, u) ∂xj u + bi (�, u)

�
.

The operator A can be seen as the in�nitesimal generator of the
Ornstein-Uhlenbeck semigroup; accordingly, it has been studied by
several authors by a semigroup approach.
It is also natural to study A = div (Ar) + hx ,Bri where A has
variable coe¢ cients; on the other hand, the constance of the matrix
B is a crucial feature of this class of operators.
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If we de�ne the matrix:

C (t) =
Z t

0
E (s)AET (s) ds, where E (s) = exp

�
�sBT

�
then it can be proved (Lanconelli-Polidoro, 1994) the equivalence between
the three conditions:

1 the operator A is hypoelliptic (Au 2 C∞ (Ω) =) u 2 C∞ (Ω), for
any open Ω � RN ), and the same holds for L;

2 C (t) > 0 for any t > 0;
3 the following Hörmander�s condition holds:

rank L (X1,X2, ...,XN ,Y0) = N, at any x 2 RN , where

Y0 = hx ,Bri and Xi =
N

∑
j=1
aij∂xj i = 1, 2, ...,N.
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For instance, in Kolmogorov�example:

A=∂2vv + v∂x

Condition 1: 9 a fundamental solution smooth outside the pole

Γ ((v , x , t) ; (0, 0, 0)) =
c
t2
exp

�
�v

2t2 + 3vxt + 3x2

t3

�
t > 0

Condition 2:

B =
�
0 1
0 0

�
; exp

�
�sBT

�
=

�
1 �s
�s s2

�
;C (t) =

"
t � t2

2
� t2
2

t3
3

#

Condition 3:

Y0 = v∂x ;X1 = ∂v

[X1,Y0] � X1Y0 � Y0X1 = ∂x ;

therefore Y0,X1, [X1,Y0] span R2, that is rankL (X1,Y0) = 2.
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Under one of these conditions it is proved by Lanconelli-Polidoro (1994)
that, for some basis of RN , the matrices A,B take the following form:

A =
�
A0 0
0 0

�
, (1)

with A0 = (aij )
p0
i ,j=1 p0 � p0 constant matrix (p0 � N), symmetric and

positive de�nite:

ν jξj2 �
p0

∑
i ,j=1

aij ξ i ξ j �
1
ν
jξj2 8ξ 2 Rp0 , some positive constant ν;

B =

2666664
� B1 0 . . . 0
� � B2 . . . 0
...

...
...

. . .
...

� � � . . . Br
� � � . . . �

3777775 (2)

where Bj is a pj�1 � pj block with rank pj , j = 1, 2, ..., r ,
p0 � p1 � ... � pr � 1 and p0 + p1 + ...+ pr = N.
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Here we consider hypoelliptic degenerate Ornstein-Uhlenbeck operators,
with the matrices A,B already written as above.

A �
p0

∑
i ,j=1

aij∂2xi xj +
N

∑
i ,j=1

bijxi∂xj

with (aij ) positive on Rp0 . For this class of operators, we will prove the
following global Lp estimates:

Theorem

For any p 2 (1,∞) there exists a constant c > 0, depending on p,N, p0,
the matrix B and the number ν such that for any u 2 C∞

0

�
RN
�
one has:∂2xi xju


Lp (RN )

� c
n
kAukLp (RN ) + kukLp (RN )

o
for i , j = 1, 2, ..., p0 (3)

kY0ukLp (RN ) � c
n
kAukLp (RN ) + kukLp (RN )

o
. (4)

Also, an analogous weak (1, 1) estimates hold.
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Comparison with the existing literature

Global estimates in Hölder spaces analogous to our Lp estimates
(3)-(4) have been proved:

I in the nondegenerate case p0 = N (corresponding to the classical
Ornstein-Uhlenbeck operator) by Da Prato and Lunardi (1995, J.
Funct. Anal.);

I in the degenerate case by Lunardi (1997, Ann. Sc. Norm. Sup. Pisa).

Lp estimates in the nondegenerate case p0 = N have been proved by
Metafune, Prüss, Rhandi and Schnaubelt (2002, Ann. Sc. Norm.
Sup. Pisa) by a semigroup approach.

Note that, even in the nondegenerate case, global estimates in Lp or
Hölder spaces are not straightforward, due to the unboundedness of
the �rst order coe¢ cients.
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Relation with the evolution operator

We will deduce global estimates for A from an analogous estimate for L
= A� ∂t on the strip

S � RN � [�1, 1] ,
which can be of independent interest:

Theorem
For any p 2 (1,∞) there exists a constant c > 0 such that∂2xi xju


Lp (S )

� c kLukLp (S ) for i , j = 1, 2, ..., p0, (5)

for any u 2 C∞
0 (S) .
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Namely, let
ψ 2 C∞

0 (R)

be a cuto¤ function �xed once and for all, sprtψ � [�1, 1] ,R 1
�1 ψ (t) dt > 0. If u : RN ! R is a C∞

0 solution to the equation

Au = f in RN ,

for some f 2 Lp
�
RN
�
, let

U (x , t) = u (x)ψ (t) ;

then
LU (x , t) = f (x)ψ (t)� u (x)ψ0 (t) � F (x , t) .

Therefore (5) applied to U gives∂2xi xjU

Lp (S )

� c kFkLp (S ) for i , j = 1, 2, ..., p0 (6)

hence ∂2xi xju

Lp (RN )

� c
n
kf kLp (RN ) + kukLp (RN )

o
with c also depending on ψ.
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The geometric framework: the group of translations

Lanconelli-Polidoro (1994) proved that the operator L is left invariant with
respect to the Lie-group translation

(x , t) � (ξ, τ) = (ξ + E (τ) x , t + τ) ;

(ξ, τ)�1 = (�E (�τ) ξ,�τ) , where

E (τ) = exp
�
�τBT

�
. (Recall A = div (Ar) + hx ,Bri )
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The geometric framework: dilations and principal part
operator
Let us consider our operator L, with the matrices A,B written in the form
(1), (2). Let B0 the matrix obtained by annihilating every � block in B:

B0 =

2666664
0 B1 0 . . . 0
0 0 B2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Br
0 0 0 . . . 0

3777775 (7)

By principal part of L we mean the operator

L0 = div (Ar) + hx ,B0ri � ∂t . (8)

For any λ > 0, let us de�ne the matrix of dilations on RN (depending on
B0)

D (λ) = diag
�
λIp0 ,λ

3Ip1 , ...,λ
2r+1Ipr

�
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and the matrix of dilations on RN+1,

δ (λ) = diag
�
λIp0 ,λ

3Ip1 , ...,λ
2r+1Ipr ,λ

2� . Note: det (δ (λ)) = λQ+2

where Q + 2 = p0 + 3p1 + ...+ (2r + 1) pr + 2

is called homogeneous dimension of RN+1.
A remarkable fact proved by Lanconelli-Polidoro (1994) is that the operator
L0 is homogeneous of degree two with respect to the dilations δ (λ):

L0 (u (δ (λ) z)) = λ2 (L0u) (δ (λ) z) 8u 2 C∞
0

�
RN+1

�
, z 2 RN+1,λ > 0.

The operator L0 is also left invariant with respect to the translations
induced by the matrix B0 (not B!):

(x , t)� (ξ, τ) = (ξ + E0 (τ) x , t + τ) where E0 (s) = exp
�
�sBT0

�
(ξ, τ)�1 = (�E0 (�τ) ξ,�τ) .

Moreover, the dilations z 7! δ (λ) z are automorphisms for the group�
RN+1,�

�
.
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An example of the previous facts

Lu = ∂2xxu + x∂yu + x∂xu � ∂tu;

A =
�
1 0
0 0

�
;B =

�
1 1
0 0

�
;E (s) = I +

�
e�s � 1

�
BT ;

(x , y , t) �
�
x 0, y 0, t 0

�
=�

x + x 0 +
�
e�t

0 � 1
�
x , y + y 0 +

�
e�t

0 � 1
�
x , t + t 0

�

L0u = ∂2xxu + x∂yu � ∂tu = 0;

A =
�
1 0
0 0

�
;B0 =

�
0 1
0 0

�
;E0 (s) = I � sBT ;

(x , y , t)�
�
x 0, y 0, t 0

�
=
�
x + x 0, y + y 0 � t 0x , t + t 0

�
δ (λ) (x , y , t) =

�
λx ,λ3y ,λ2t

�
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Known results for the principal part operator
The principal part operator L, left invariant w.r.t. a group of
translation and homogeneous of degree 2 w.r.t. a family of dilations,
has been extensively studied in the last decades.

In particular, it �ts the assumptions of Folland�s paper [1975, Arkiv
for Mat.]: it possesses a homogeneous fundamental solution; a good
theory of singular integrals (on �homogeneous groups�) can be
applied and global Lp estimates can be proved on RN+1.
The main feature of the present paper is to deal with the general
situation (no family of dilations); this class has been much less
studied.
In this general case there is no reasonable hope of proving global Lp

estimates on RN+1 for the evolution operator; the best one can hope
(and what we actually do) is to prove Lp estimates on a strip
RN � [�1, 1] for L, and to deduce global estimates on RN for the
stationary operator.
Acually, our result seems to be the �rst case of global Lp estimates
for A, proved without an underlying homogeneous group.
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Fundamental solution

Theorem
Under the previous assumptions, the operator L possesses a fundamental
solution

Γ (z , ζ) = γ
�
ζ�1 � z

�
for z , ζ 2 RN+1,

with

γ (z) =

8<: 0 for t � 0
(4π)�N/2
p
detC (t)

exp
�
� 1
4



C�1 (t) x , x

�
� tTrB

�
for t > 0

where z = (x , t) . Recall that

C (t) =
Z t

0
E (s)AET (s) ds, where E (s) = exp

�
�sBT

�
and C (t) > 0 for any t > 0; hence γ 2 C∞ �RN+1n f0g

�
.

Marco Bramanti (Polytechnic of Milan. Italy) Degenerate Ornstein-Uhlenbeck operators Madrid, November 11, 2008 17 / 41



Theorem (continued)
The following representation formulas hold:

u (z) = � (γ � Lu) (z) = �
Z

RN+1
γ
�
ζ�1 � z

�
Lu (ζ) dζ; (9)

∂2xi xju (z) = �PV
�

∂2xi xjγ � Lu
�
(z) + cijLu (z) (10)

for any u 2 C∞
0

�
RN+1

�
, i , j = 1, 2, ..., p0, for suitable constants cij .

The �principal value� in (10) must be understood as

PV
�

∂2xi xjγ � Lu
�
(z) � lim

ε!0

Z
d (z ,ζ)>ε

�
∂2xi xjγ

� �
ζ�1 � z

�
Lu (ζ) dζ.

The above theorem is proved by Hörmander (1967) (see also
Lanconelli-Polidoro (1994)), apart from (10) which is proved in Di
Francesco-Polidoro (2006). (I will de�ne later this d).
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The fundamental solution Γ0 (z , ζ) = γ0
�
ζ�1 � z

�
of the principal part

operator L0 enjoys special properties:

for t > 0

γ0 (x , t) =
(4π)�N/2p
detC0 (t)

exp
�
�1
4



C�10 (t) x , x

��
;

γ0 is homogeneous of degree �Q with respect to the δ (λ)-dilations.

Some relations link L to L0: for t ! 0,

hC (t) x , xi = hC0 (t) x , xi (1+O (t)) ;

C�1 (t) x , x

�
=


C�10 (t) x , x

�
(1+O (t)) ;

detC (t) = detC0 (t) (1+O (t)) .

All the estimates on γ that we will need in the following are proved
exploiting these relations between γ and γ0, since γ0 is easier to
handle.
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Estimate on the nonsingular part of the integral
We now localize the singular kernel ∂2xi xjγ introducing a cuto¤ function

η 2 C∞
0

�
RN+1

�
such that

η (z) = 1 for d (z , 0) � ρ0/2;
η (z) = 0 for d (z , 0) � ρ0,

where ρ0 � 1 will be �xed later.
Let us rewrite the representation formula as:

∂2xi xju = �PV
��

η∂2xi xjγ
�
� Lu

�
�
�
(1� η) ∂2xi xjγ � Lu

�
+ cijLu (11)

� �PV (k0 � Lu)� (k∞ � Lu) + cijLu

having set:

k0 = η∂2xi xjγ (12)

k∞ = (1� η) ∂2xi xjγ

for any i , j = 1, 2, ..., p0.
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Since in k∞ the singularity of ∂2xi xjγ has been removed and ∂2xi xjγ has a
fast decay as x ! ∞, we can prove the following:

Theorem
For any ρ0 > 0 there exists c = c(ρ0) > 0 such that for any z 2 SZ

S

��k∞
�
ζ�1 � z

��� dζ � c (13)Z
S

��k∞
�
z�1 � ζ

��� dζ � c . (14)

This immediately implies the following:

Corollary

For any p 2 [1,∞] there exists a constant c > 0 only depending on
p,N, p0, ν and the matrix B such that:

k� (k∞ � Lu) + cijLukLp (S ) � c kLukLp (S ) for any u 2 C
∞
0 (S) , (15)

any i , j = 1, ..., p0.

Marco Bramanti (Polytechnic of Milan. Italy) Degenerate Ornstein-Uhlenbeck operators Madrid, November 11, 2008 21 / 41



Estimates on the singular kernel

By the representation formula and the last Corollary, our �nal goal will be
achieved as soon as we will prove that

kPV (k0 � Lu)kLp (S ) � c kLukLp (S ) (16)

for any u 2 C∞
0 (S) , i , j = 1, ..., p0, 1 < p < ∞.

Next steps are the following:

We will prove that our singular kernel k0 = η � ∂2xi xjΓ, satis�es
�standard estimates� (in the language of singular integrals theory)
with respect to a suitable �quasidistance�d , which is a key
geometrical object in our study.

We will study this object d , to understand which kind of abstract
result about singular integrals can be applied, to prove (16)
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The geometric framework: the �hybrid�quasidistance
There is a natural homogeneous norm in RN+1, induced by the
dilations δ (λ) associated to L0:

k(x , t)k =
N

∑
j=1
jxj j1/qj + jtj1/2

where qj are the integers in δ (λ) = diag
�
λq1 , ...,λqN ,λ2

�
, and

kδ (λ) zk = λ kzk for any λ > 0, z 2 RN+1.

Di Francesco-Polidoro (2006) have introduced the following
quasisymmetric quasidistance:

d (z , ζ) =
ζ�1 � z

 , where:

I ζ�1 � z is the Lie group operation related to the operator L (or more
precisely by the matrix B),

I k�k is the homogeneous norm related to the principal part operator L0
(i.e. to the matrix B0)

I recall that L is not homogeneous w.r.t. a family of dilations, and
therefore does not have a natural homogeneous norm.
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Estimates on the fundamental solution

Exploiting the relations between Γ (fund. sol. of L) and Γ0 (fund. sol. of
L0), one can prove:

Theorem
(Di Francesco-Polidoro) The following �standard estimates�hold for Γ in
terms of d: there exist c > 0 and M > 1 such that���∂2xi xjΓ (z , ζ)��� � c

d (z , ζ)Q+2
8z , ζ 2 S���∂2xi xjΓ (ζ,w)� ∂2xi xjΓ (z ,w)

��� � c d (w , z)

d (w , ζ)Q+3
8z , ζ,w 2 S

with Md (w , z) � d (w , ζ) � 1.

An easy computation shows that the previous estimates extend to the
kernel k0 = η∂2xi xjγ.
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We can also prove the following:

Lemma
There exists c > 0 such that�����

Z
r1<kζ�1�zk<r2

k0
�
ζ�1 � z

�
dζ

����� � c
for any z 2 S , 0 < r1 < r2. Moreover, for every z 2 S, the limit

lim
ε!0+

Z
kζ�1�zk>ε

k0
�
ζ�1 � z

�
dζ

exists, is �nite, and independent of z.

Hence, our singular integral satis�es good properties w.r.t. d .

What about the properties of d?
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�Locally quasisymmetric quasidistance�

Theorem
(Di Francesco-Polidoro). For any z ,w , ζ 2 S with
d (z ,w) � 1, d (ζ,w) � 1,

d (z ,w) � cd (w , z)
d (z , ζ) � c fd (z ,w) + d (w , ζ)g

Let us de�ne the d-balls:

B (z , ρ) =
n

ζ 2 RN+1 : d (z , ζ) < ρ
o
.

Then the d-balls are open with respect to the Euclidean topology.
Moreover, the topology induced by this family of balls coincides with the
Euclidean topology.
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Volume of metric balls
We can easily prove the following facts, about the measure of d-balls:

Theorem
(i) The following dimensional bound holds the measure of d-balls:

jB (z , ρ)j � cρQ+2 8z 2 S , 0 < ρ < 1.

(ii) The following doubling condition holds in S:

jB (z , 2ρ) \ S j � c jB (z , ρ) \ S j 8z 2 S , 0 < ρ < 1.

Summarizing, we have:

I a function d which is locally a (quasisymmetric) quasidistance, and
I the Lebesgue measure which is locally doubling.

Can we say that, for a �xed bounded cylinder
Q = Ω� [�1, 1] � RN+1, (Q, d , dxdt) is a space of homogeneous
type?
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What�s going wrong...
To assure that d is a (quasisymmetric) quasidistance we have to
choose (as �universe�)

X = Ω� [�1, 1]
for some bounded domain Ω � RN . In this space X , the balls are:eB (z , ρ) = fζ 2 X : d (z , ζ) < ρg = B (z , ρ) \ X .

As to the doubling condition, we know that

jB (z , 2ρ) \ S j � c jB (z , ρ) \ S j for any z 2 S , 0 < ρ < 1

(in time, the distance is Euclidean) but we cannot prove that

jB (z , 2ρ) \ X j � c jB (z , ρ) \ X j for any z 2 X , 0 < ρ < 1.

We are forced to avoid using the doubling condition.
We can only rely on the upper bound:

jB (z , ρ) \ X j � cρQ+2.
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Singular integrals on nonhomogeneous spaces

The context we have just described is similar to that of
nonhomogeneous spaces, which have been studied since the late
1990�s by Nazarov-Treil-Volberg (Internat. Math. Res. Notices
1998), Tolsa (J. Reine Angew. Math. 1998), and other authors.

Motivation of their theory: solution to several questions related to
analytic capacity. This is perhaps the �rst application to PDEs of the
theory of S.I. in nonhomogeneous spaces.

However, the existing theory of nonhomogeneous spaces is not yet
well suited to the present situation.

Like in the classical case, also in the nondoubling context the theory
of Calderón-Zygmund operators proceeds in two steps:

1 the proof of L2 continuity for an operator with kernel satisfying
standard estimates plus some kind of cancellation property;

2 the proof of weak (1, 1) continuity for an operator which is continuous
on L2, with kernel satisfying standard estimates.
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In the papers by Nazarov-Treil-Volberg and by Tolsa, the two steps
have been performed at di¤erent levels of generality:

1 for the L2 step, the space is usually Rn (or just R2) with the Euclidean
distance, while...

2 for the step L2 =) Lp they consider a separable metric space (X , d).

In both cases, the measure usually satis�es the dimensional bound

µ (Br (x)) � crn (17)

for some positive constants c , n, but can be nondoubling. The
cancellation property considered in step (1) is usually very weak,
inspired to the theorems T (1), T (b) or variants of them.
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In contrast with this setting, in our application it is essential to prove
L2 (and Lp) estimates in a bounded space endowed with a general
quasidistance and a possibly nondoubling measure satisfying (17);

on the other hand, we can rely on a strong (and more classical) kind
of cancellation property, which should make some arguments much
simpler: the boundedness of T (1) and T � (1).

Our idea is to get a new proof of L2 (and Lp) continuity for a
Calderón-Zygmund operator, with the aforementioned features.

This has been performed in the paper:
M. Bramanti: Singular integrals in nonhomogeneous spaces: and
continuity from Hölder estimates. To appear on Revista Matemàtica
Iberoamericana.
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De�nition
We will say that (X , d , µ, k) is a nonhomogeneous space with
Calderón-Zygmund kernel k if:

1 (X , d) is a set endowed with a quasisymmetric quasidistance d , such
that the d-balls are open with respect to the topology induced by d ;

2 µ is a positive regular Borel measure on X , and 9A, n > 0 such that:

µ (B (x , ρ)) � Aρn for any x 2 X , ρ > 0; (18)

3 k (x , y) : X � X ! R is a measurable kernel, and 9β > 0 such that:

jk (x , y)j � A
d (x , y)n

for any x , y 2 X ;

jk (x , y)� k (x0, y)j � A
d (x0, x)

β

d (x0, y)
n+β

(19)

for any x0, x , y 2 X with d (x0, y) � Ad (x0, x) , where n,A are as in
(18)
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Theorem
Let (X , d , µ, k) be a bounded and separable nonhomogeneous space with
Calderón-Zygmund kernel k. Also, assume that
(i) k� (x , y) � k (y , x) satis�es (19);
(ii) 9B > 0 such that 8ρ > 0, x 2 X����Z

d (x ,y )>ρ
k (x , y) dµ (y)

����+ ����Z
d (x ,y )>ρ

k� (x , y) dµ (y)

���� 6 B; (20)

(iii) for a.e. x 2 X , the limits

lim
ρ!0

Z
d (x ,y )>ρ

k (x , y) dµ (y) ; lim
ρ!0

Z
d (x ,y )>ρ

k� (x , y) dµ (y)

exist �nite.
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Theorem (continued)
Then the operator

Tf (x) � lim
ε!0

Tεf (x) � lim
ε!0

Z
d (x ,y )>ε

k (x , y) f (y) dµ (y)

is well de�ned for any f 2 L1 (X ) , and

kTf kLp (X ) � cp kf kLp (X ) for any p 2 (1,∞) ;

moreover, T is weakly (1, 1) continuous. The constant cp only depends on
all the constants implicitly involved in the assumptions:
p, cd ,A,B, n, β,diam(X ).
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Conclusion of the proof of Lp estimates on the strip

Thanks to the abstract result proved for singular integrals in
nonhomogeneous spaces, we are able to prove the following local
estimate for our singular integral:

Corollary
Let k0 be our singular kernel. 9R0 > 0 s.t., 8z0 2 S , R � R0, if a, b are
two cuto¤ functions in C α

�
RN+1

�
for some α > 0, with sprt a,

sprt b � B (z0,R) , and we set

k (z , ζ) = a (z) k0
�
ζ�1 � z

�
b (ζ) ;

Tf (z) = PV
Z
B (z0,R )

k (z , ζ) f (ζ) dζ,

then 8p 2 (1,∞) 9c > 0 (independent of z0 and R) such that

kTf kLp (B (z0,R )) � c kf kLp (B (z0,R )) 8f 2 Lp (B (z0,R)) .
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To deduce from this local estimate our desired estimate on the whole
strip, one can think to apply a standard covering argument and cuto¤
function. Actually this works, but it is not trivial:

Lemma
For every r0 > 0 and K > 1 there exist ρ 2 (0, r0), a positive integer M
and a sequence of points fzig∞

i=1 � S such that:

S �
∞[
i=1

B (zi , ρ) ;
∞

∑
i=1

χB (zi ,K ρ) (z) � M 8z 2 S .

Note that the above bounded intersection property is nontrivial since
the space S is unbounded and there is not a simple relation between
d and the Euclidean distance.

To prove it, we have to exploit the full properties enjoyed by d , that is:

I d is a locally quasidistance;
I the Lebesgue measure is locally doubling.
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Strategy used to prove the Lp singular integral estimate in
nonhomogeneous spaces

Step 1. Thanks to the cancellation property we assume, it is not di¢ cult
to prove, also in the nondoubling context and for any quasidistance, that
the singular integral operator (or a suitable variant of this) is continuous
on Hölder spaces C α (X ), where X is our nonhomogeneous space.

Theorem
Let (X , d , µ, k) be a bounded nonhomogeneous space with
Calderón-Zygmund kernel k. For any f 2 C α (X ) , let

bTf (x) = Z
k (x , y) [f (y)� f (x)] dµ (y)

(a) Then the integral de�ning bTf (x) is absolutely convergent for any
f 2 C α (X ) , α > 0, x 2 X .
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Theorem (continued)

(b) Assume there exists a constant B > 0 such that����Z
d (x ,y )>r

k (x , y) dµ (y)

���� 6 B 8r > 0, x 2 X . (21)

Then the operator bT is continuous on C α (X ) for any α < β (β being the
exponent in the mean value inequality (19) of k). More precisely:��� bTf ���

C α(X )
6 c jf jC α(X )bTf 

∞
6 cRα jf jC α(X )

where R =diam(X ), and c depends on A,B, cd , n, α, β.
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Step 2. An abstract argument originally due to Krein (1947) allows to
deduce the continuity of the singular integral operator on L2 (X ) from that
on C α (X ).
This idea has been applied, in the doubling context, by Wittman (1987)
and Fabes-Mitrea-Mitrea (1999) but perhaps this approach is not widely
known.

Theorem
(Krein) Let H be a (real, for simplicity) Hilbert space and Y a linear
normed space for which the inclusion i : Y ! H is well de�ned,
continuous and with dense range. Let T ,T � : Y ! Y be two linear
continuous operators on Y such that

(Tx , y) = (x ,T �y) for any x , y 2 Y ,

where (, ) denotes the scalar product in H. Then T and T � extend to
linear continuous operators on H, with

kTkH!H , kT �kH!H � kTk
1/2
Y!Y � kT �k

1/2
Y!Y .
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Applying the theorem to H = L2 (X ) ,Y = C α (X ) , bT , we get the L2
continuity of bT and therefore of T , because:

Tεf (x) �
Z
d (x ,y )>ε

k (x , y) f (y) dµ (y) =

=
Z
d (x ,y )>ε

k (x , y) [f (y)� f (x)] dµ (y) + f (x)
Z
d (x ,y )>ε

k (x , y) dµ (y) ;

hence, there exists

Tf (x) � lim
ε!0

Tεf (x) = bTf (x) + f (x) h (x)
and h 2 L∞ (X ). Hence

kTf kL2(X ) �
bTf 

L2(X )
+ khkL∞(X ) kf kL2(X ) (22)
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Step 3. Once the L2 continuity is proved, the weak (1, 1) continuity result
proved by Nazarov-Treil-Volberg can be applied, with some minor
adaptation: one has to check that their arguments actually work for any
quasidistance, and not necessarily in a metric space. This immediately
implies the desired Lp estimate.
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