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a b s t r a c t

Let X1, . . . , Xq be the basis of the space of horizontal vector fields on a homogeneous Carnot
group G = (Rn, ◦) (q < n). We consider the following divergence degenerate elliptic
system

N
β=1

q
i,j=1

Xi


aijαβ(x)Xjuβ


=

q
i=1

Xif iα, α = 1, 2, . . . ,N

where the coefficients aijαβ are real valued bounded measurable functions defined in
Ω ⊂ G, satisfying the strong Legendre condition and belonging to the space VMOloc (Ω)
(defined by the Carnot–Carathéodory distance induced by the Xi’s). We prove interior
HW 1,p estimates (2 ≤ p < ∞) for weak solutions to the system.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let

Xi =

n
j=1

bij (x) ∂xj , i = 1, 2, . . . , q,

be a family of real smooth vector fields defined in some bounded domain Ω ⊂ Rn (q < n) and satisfying Hörmander’s
condition: the Lie algebra generated by X1, . . . , Xq spans Rn at any point ofΩ . Since Hörmander’s famous paper [24], there
has been tremendous work on the geometric properties of Hörmander’s vector fields; see [28,25,20–22,26,27], and refer-
ences therein. Meanwhile, regularity for linear degenerate elliptic equations involving vector fields has been investigated
and many results have been proved; see for instance [19,30,2–7,33,26,27] and references therein; as for subelliptic systems
structured on Hörmander’s vector fields, we can quote [17,35,31].

In this paper we consider divergence degenerate elliptic systems structured on Hörmander’s vector fields in Carnot
groups. Namely (here we briefly state our assumptions and result; precise definitions and assumptions will be given in
Section 2.1), let X1, . . . , Xq be the canonical basis of the space of horizontal vector fields in a homogeneous Carnot group
G = (Rn, ◦); we consider the system

Xi


aijαβ(x)Xjuβ


= Xif iα (1.1)
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in some domainΩ ⊂ Rn where α, β = 1, . . . ,N, i, j = 1, 2, . . . , q, F =

f iα


∈ Lp

Ω; MN×q


(2 ≤ p < ∞) is a given N × q

matrix. In (1.1) and throughout the paper, the summation is understood for repeated indices. If the tensor

aijαβ(x)


satisfies

the strong Legendre condition (see (2.7)), by the Lax–Milgram theorem the natural functional framework for solutions to
(1.1) is the Sobolev spaceHW 1,2

loc


Ω; RN


, so the regularity problem for (1.1) amounts to asking: if F ∈ Lp


Ω; MN×q


for some

p > 2, can we say that u ∈ HW 1,p, at least locally?Wewill prove an affirmative answer to this question (see Theorem 2.12),
under the assumption that the coefficients aijαβ belong to the space VMOloc (Ω), with respect to the Carnot–Carathéodory
distance induced by the vector fields. Under this respect, this result is in the same spirit as the Lp regularity results
proved for nonvariational elliptic equations by Chiarenza et al. [14,15], for elliptic systems by Chiarenza et al. [13] (see
also [12]), and for nondivergence equations structured on Hörmander’s vector fields by Bramanti and Brandolini [2,3],
while analogous regularity estimates in Morrey spaces have been proved for instance by Di Fazio et al. in [18], and by
Palagachev–Softova in [29]. However, the technique of the proof in the present case is completely different. Namely, while
in all the aforementioned papers Lp or Morrey estimates are proved by exploiting representation formulas for solutions
and singular integral estimates, in the case of subelliptic systems, even on Carnot groups, no result about representation
formulas by means of homogeneous fundamental solutions seems to be known. Hence we have to make use of a different
technique, which has been designed and exploited in a series of papers by Byun–Wang to deal with elliptic equations and
systems, also in very rough domains; see [34,8,9] and references therein. Namely, the key technical point is a series of local
estimates involving the maximal function of |Xu|2 (Sections 4 and 5) which hold under an assumption of smallness of the
mean oscillation of the coefficients. One of the tools used to prove these local estimates is the possibility of approximating,
locally, the solution to a system with small datum and small oscillation of the coefficients by the solution to a different
system, with constantcoefficients (Section 3). In turn, the solution to a constant coefficients system on a Carnot group is
known to satisfy an L∞ gradient bound (see Theorem 2.10) which turns out to be a key tool in our proof. This result about
systems with constant coefficients in Carnot groups has been proved by Shores [31], and represents one of themain reasons
why we have restricted ourselves to the case of Carnot groups instead of considering general Hörmander’s vector fields.

This paper represents the first case of study of Lp estimates on the ‘‘subelliptic gradient’’ Xu for subelliptic systems. Di
Fazio and Fanciullo in [17] have deduced interior Morrey regularity in spaces L2,λ for weak solutions to the system (1.1)
under the assumption that the coefficients aijαβ belong to the class VMOX ∩ L∞, while Schauder-type estimates have been
proved for subelliptic systems by Xu and Zuily [35].

This paper is organized as follows. In Section 2 we recall some basic facts about Carnot groups and state precisely
our assumptions and main results; in Section 3 we prove the approximation result for local solutions to the original
system by means of solutions to a system with constant coefficients; in Section 4 we prove some local estimates on the
Hardy–Littlewood maximal function of |Xu|2, and in Section 5 we come to the proof of our main result.

2. Preliminaries and statement of the results

2.1. Background on Carnot groups

We are going to recall here a few facts about Carnot groups that we will need in the following. For the proofs, more
properties, and examples, we refer the reader to the paper [19], the books [1] and [32, Chapters XII–XIII].

Definition 2.1 (Homogeneous Carnot Groups). A homogeneous group G is the set Rn endowed with a Lie group operation ◦

(‘‘translation’’), where the origin is the group identity, and a family {D (λ)}λ>0 of group automorphisms (‘‘dilations’’), acting
as follows:

D (λ) (x1, x2, . . . , xn) = (λα1x1, λα2x2, . . . , λαnxn) ∀λ > 0

for some fixed exponents 0 < α1 < α2 < · · · < αn. The number Q =
n

j=1 αj is called the homogeneous dimension of G.
We say that a vector field X =

n
j=1 bj (x) ∂xj is left invariant if for any smooth function f one has

X x (f (y ◦ x)) = (Xf ) (y ◦ x) ∀x, y ∈ G;

we say that X is k-homogeneous if for any smooth function f one has

X (f (D (λ) x)) = λk (Xf ) (D (λ) x) ∀λ > 0, x ∈ G.

Let Xi (i = 1, 2, . . . , n) be the unique left invariant vector field on G which at the origin coincides with ∂xi . We assume
that for some integer q < n the vector fields X1, X2, . . . , Xq are 1-homogeneous and satisfy Hörmander’s condition in Rn:
the Lie algebra generated by the Xi’s at any point has dimension n. Under these assumptions we say that G is a homogeneous
Carnot group and that


X1, X2, . . . , Xq


is the canonical basis of the space of horizontal vector fields.

The properties required in the above definition have a number of consequences: the exponents αi are actually positive
integers, the Lie algebra of G is stratified, homogeneous and nilpotent; the vector fields Xi have polynomial coefficients.
Moreover, the Lebesgue measure of Rn is the Haar measure in G.
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Like for any set of Hörmander’s vector fields, it is possible to define the corresponding Carnot–Carathéodory distance dX ,
as follows.

Definition 2.2 (CC-distance). For any δ > 0, let Cδ be the set of absolutely continuous curves φ : [0, 1] → Rn such that

φ′ (t) =

q
i=1

ai (t) Xi (φi (t)) with |ai (t)| ≤ δ for a.e. t ∈ [0, 1] .

Then

dX (x, y) = inf {δ > 0 : ∃φ ∈ Cδ with φ (0) = x, φ (1) = y} .

The function dX turns out to be finite for any couple of points, and is actually a distance, called Carnot–Carathéodory
distance; due to the structure of Carnot group, dX is also left invariant and 1-homogeneous on G. Let

Br (x) = {y ∈ G : dX (x, y) < r}

be the metric ball of center x and radius r in G. Since the Lebesguemeasure in Rn is the Haar measure on G, one has (writing
|A| for the measure of A)

|Br (x)| = ωGrQ , (2.1)

where Q is the homogeneous dimension of G and ωG is a positive constant.
Next, we need to define the function spaces we will use in the following.

Definition 2.3 (Horizontal Sobolev Spaces). For any p ≥ 1 and domainΩ ⊂ G, let us define the horizontal Sobolev space:

HW 1,p Ω; RN
=


u ∈ Lp


Ω; RN

: ∥u∥HW1,p(Ω;RN) < ∞


with the norm

∥u∥HW1,p(Ω;RN) = ∥u∥Lp(Ω;RN) + ∥Xu∥Lp(Ω;RN) ,

having set

∥u∥Lp(Ω;RN) = ∥|u|∥Lp(Ω) , with |u| =


N
α=1

|uα|2
1/2

and

∥Xu∥Lp(Ω;RN) = ∥|Xu|∥Lp(Ω) , with |Xu| =


N
α=1

q
i=1

|Xiuα|
2

1/2

.

Also, we define the space HW 1,p
loc


Ω; RN


as the space of functions u such that uφ ∈ HW 1,p


Ω; RN


for any φ ∈ C∞

0 (Ω)

and the space HW 1,p
0


Ω; RN


as the closure of C∞

0


Ω; RN


in the norm HW 1,p


Ω; RN


.

Definition 2.4 (BMO-type Spaces). For anyΩ ′ b Ω , let R0 be a number such that Br (x) b Ω for any x ∈ Ω ′ and r ≤ R0. For
any f ∈ L1loc (Ω) and r ≤ R0, let

ηΩ ′,R0,f (r) = sup
x0∈Ω ′,0<ρ≤r

1Bρ (x0)

Bρ (x0)

f (x)− fBρ (x0)
2 dx,

where fBρ (x0) =
1

|Bρ (x0)|


Bρ (x0)

f (x) dx.

We say that f is (δ, R)-vanishing inΩ ′ (for a couple of fixed positive numbers δ, R, with R ≤ R0) if

ηΩ ′,R0,f (R) < δ2.

We say that f ∈ VMOloc (Ω) if for anyΩ ′ b Ω and R0 such that Br (x) b Ω for any r ≤ R0 and x ∈ Ω ′, we have

ηΩ ′,R0,f (r) → 0 as r → 0.

The function ηΩ ′,R0,f is called the local VMOmodulus of f onΩ ′.

We will use the following well-known result by Jerison (see [25, Theorem 2.1] for the case p = 2 and [25, Section 6] for
p ≠ 2).
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Theorem 2.5 (Poincaré’s Inequality). For 1 ≤ p < ∞ there exists a positive constant c = c (G, p), such that for any u ∈ HW 1,p

(BR) , u − uBR


Lp(BR)

≤ cR ∥Xu∥Lp(BR) . (2.2)

If u ∈ HW 1,p
0 (BR),

∥u∥Lp(BR) ≤ cR ∥Xu∥Lp(BR) . (2.3)

The previous theorem holds for a general system of Hörmander’s vector fields; in that case, however, some restriction on
the center and radius of the ball BR applies (see [25, Theorem 2.1]); on a Carnot group, instead, due to the dilation invariance
of the inequalities (2.2) and (2.3), these hold for any ball BR and with an ‘‘absolute’’ constant c .

We will also make use of the following.

Definition 2.6 (Space of Homogeneous Type, See [16]). Let S be a set and d : S× S → [0,∞) a quasidistance, that is, for some
constant c ≥ 1 one has

d (x, y) = 0 ⇐⇒ x = y
d (x, y) = d (y, x)
d (x, y) ≤ c [d (x, z)+ d (z, y)] (2.4)

for all x, y, z ∈ S. The balls defined by d induce a topology in S; let us assume that the d-balls are open in this topology.
Moreover, assume that there exists a regular Borel measure µ on S, such that the ‘‘doubling condition’’ is satisfied:

µ (B2r(x)) ≤ cµ (Br(x)) , (2.5)

for every r > 0, x ∈ S and some positive constant c. Then we say that (S, d, µ) is a space of homogeneous type.

Remark 2.7. Note that in our context any Carnot–Carathéodory ball BR (x0) is a dX -regular domain (see for instance
[4, Lemma 4.2]), that is there exists a positive constant cd such that

|BR (x0) ∩ Br (x)| ≥ cd |Br (x)| ∀r > 0,∀x ∈ BR (x0) . (2.6)

This implies that (BR (x0) , dX , dx) is a space of homogeneous type. Moreover, a simple dilation argument shows that, in a
Carnot group, the constant cd, and therefore the doubling constant of (BR (x0) , dX , dx), is independent of R.

2.2. Assumptions and known results about degenerate systems

The general assumptions which will be in force throughout the paper are collected in the following.

Assumption (H). We assume that G is a homogeneous Carnot group in Rn and

X1, X2, . . . , Xq


is the canonical basis of the

space of horizontal vector fields in G (see Definition 2.1). We assume that the coefficients
aijαβ


i,j=1,...,q
α,β=1,...,N

in (1.1) are real valued, boundedmeasurable functions defined inΩ and satisfying the strong Legendre condition: there exists
a constant µ > 0 such that

µ|ξ |2 ≤ aijαβ(x)ξ
α
i ξ

β

j ≤ µ−1
|ξ |2 (2.7)

for any ξ ∈ MN×q, a.e. x ∈ Ω .

We recall the standard definition of weak solution.

Definition 2.8. We say that u ∈ HW 1,2

Ω; RN


is a weak solution to the system (1.1), if it satisfies

Ω

aijαβ(x)XjuβXiϕ
αdx =


Ω

f iαXiϕ
αdx

for any ϕ ∈ HW 1,2
0


Ω; RN


.

Recall that on a Carnot group the transpose of a vector field is just the opposite: X∗

i = −Xi. Hence the above definition
of weak solution is consistent with the way the system (1.1) is written.
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Remark 2.9. Let BR ⊂ Ω be any metric ball. If f iα ∈ L2 (BR) and u0 ∈ HW 1,2 (BR), then by assumption (2.7) and Poincaré’s
inequality (2.3) we can apply Lax–Milgram’s theorem, and conclude that there exists a unique solution u ∈ HW 1,2


BR; RN


to system (1.1) such that u − u0 ∈ HW 1,2

0 (BR). Moreover, the following a priori estimate holds:

∥u∥HW1,2(BR;RN) ≤ c

∥F∥L2(BR;MN×q) + ∥u0∥HW1,2(BR;RN)


(2.8)

for some constant c only depending on G, µ, R (see [11, Chapter 8] for a proof of this fact in the elliptic case).

The next result is taken from [31, Corollary 19]. See also [23], where the analogous parabolic inequality is proved.

Theorem 2.10. Let v ∈ HW 1,2

B (x0, KR) ; RN


be a solution to the system

Xi


aijαβXjv

β


= 0 in B (x0, KR)

with constant coefficients aijαβ satisfying (2.7) and some K > 1. Then v ∈ C∞

B (x0, KR) ; RN


; moreover

sup
BR(x0)

|Xv|2 ≤ cR−2 1
|BKR (x0)|


BKR(x0)

|v|2 dx,

where the positive constant c depends on K , µ,G,N but is independent of x0, R and v.

The following result can be proved in a completely standard way by suitable cutoff functions (for the analogous elliptic
version see for instance [11, Theorem 2.1 p.134]).

Theorem 2.11 (Caccioppoli’s Inequality). Let u ∈ HW 1,2

BR (x) ; RN


be a weak solution to (1.1) in BR (x) ⊂ Ω . There exists a

constant c > 0 depending on G,N, R such that for any ρ ∈ (0, R) ,
Bρ (x)

|Xu (x)|2 dx ≤ c


1

(R − ρ)2


BR(x)

|u (x)|2 dx +


BR(x)

|F (x)|2 dx

. (2.9)

2.3. Statement of the result

We now state precisely the main result of this paper.

Theorem 2.12. Under Assumption (H), let the aijαβ ’s belong to VMOloc (Ω) and let Ω ′ b Ω, 2 < p < ∞. Then there is a positive
constant c depending on G, µ, p,Ω,Ω ′ and the local VMO moduli of the aijαβ ’s inΩ

′ such that if F =

f iα


∈ Lp

Ω; MN×q


and

u ∈ HW 1,2

Ω; RN


is a weak solution to (1.1) inΩ , then u ∈ HW 1,p


Ω ′

; RN

and

∥u∥HW1,p(Ω ′;RN) ≤ c

∥F∥Lp(Ω;MN×q) + ∥u∥L2(Ω;RN)


. (2.10)

In order to prove Theorem 2.12, we will prove the following local result.

Theorem 2.13. Under Assumption (H), for any x ∈ Ω, R0 > 0 such that B11R0 (x) ⊂ Ω there exists δ = δ (p,G, R0, µ) > 0
such that for any R ≤ R0, if the coefficients a

ij
αβ are (δ, 8R)-vanishing in BR (x) and p ∈ (2,∞), then there is a positive c = c(R, R0,

p,G) such that if F =

f iα


∈ Lp

B11R (x) ; MN×q


and u ∈ HW 1,2


B11R (x) ; RN


is a weak solution of (1.1) in B11R (x), then

u ∈ HW 1,p

BR (x) ; RN


and

∥Xu∥Lp(BR(x);RN) ≤ c

∥F∥Lp(B11R(x);MN×q) + ∥Xu∥L2(B11R(x);RN )


. (2.11)

Proof of Theorem 2.12 from Theorem 2.13. For fixed domainsΩ ′ b Ω ′′ b Ω , pick R0 such that B12R0 (x) ⊂ Ω ′′ for any x ∈

Ω ′. For this R0 and a fixed p ∈ (2,∞), let δ be as in Theorem2.13. Since the aijαβ ’s belong to VMOloc (Ω), there exists R ≤ R0, R
depending on Ω,Ω ′, R0, δ, such that the aijαβ ’s are (δ, 8R)-vanishing in BR (x). Therefore by Theorem 2.13, (2.11) holds for
any such x and R. Next, we apply Caccioppoli’s inequality (2.9), getting

∥Xu∥L2(B11R(x);RN ) ≤ c

1
R

∥u∥L2(B12R(x);RN ) + ∥F∥L2(B12R(x);MN×q)


,
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which inserted in (2.11) gives

∥Xu∥Lp(BR(x);RN) ≤ c (R)

∥F∥Lp(B12R(x);MN×q) + ∥u∥L2(B12R(x);RN )


. (2.12)

On the other hand, by Poincaré’s inequality (2.2) we have

∥uα∥Lp(BR(x)) ≤
uα − uαBR(x)


Lp(BR(x))

+
uαBR(x) |BR (x)|1/p

≤ cR ∥Xuα∥Lp(BR(x)) + ∥uα∥L2(BR(x)) |BR (x)|1/p−1/2
;

hence

∥u∥Lp(BR(x);RN) ≤ c (R, p)

∥Xu∥Lp(BR(x);RN) + ∥u∥L2(BR(x);RN)


,

which together with (2.12) gives

∥u∥HW1,p(BR(x);RN) ≤ c

∥F∥Lp(B12R(x);MN×q) + ∥u∥L2(B12R(x);RN )


.

A covering argument then gives (2.10). �

It isworthwhile to point out that, aswewill see from the proof of Theorem2.13 in Section 5, the following bound, stronger
than (2.11), is actually established:MB11R(x)


|Xu|2

1/2
Lp/2(BR(x);RN)

≤ c

∥F∥Lp(B12R(x);MN×q) + ∥u∥L2(B12R(x);RN )


, (2.13)

where M is the Hardy–Littlewood maximal function (see Section 4).

Remark 2.14. Note that what allows to exploit the VMO assumption on the coefficients is the fact that the number δ in
Theorem 2.13 depends on R0 but not on R ≤ R0, which allows shrinking R without changing δ, to get the (δ, R)-vanishing
condition satisfied. Under this regard, our result is very different from those proved for instance in [9,8]where the parameter
δ possibly depends on R, which makes the (δ, R)-vanishing assumption hard to check.

Dependence of constants. Throughout this paper, the letter c denotes a constant which may vary from line to line. The
parameters which the constants depend on are declared in the statements or in the proofs of the theorems. When we write
that c is an ‘‘absolute constant’’ we mean that it may depend on G and N .

3. Approximation by solutions of systems with constant coefficients

Notation 3.1. In order to simplify notation, henceforth we will systematically write the norms and spaces of vector valued
functions as

HW 1,p (B) , ∥u∥HW1,p(B) , ∥F∥Lp(B) instead of

HW 1,p B; RN , ∥u∥HW1,p(B;RN) , ∥F∥Lp(B;MN×q) ,

and so on.

In this section we will prove a couple of theorems asserting that a solution to a system (1.1) with small datum F and
coefficients with small oscillation, can be suitably approximated by a solution to a system with constant coefficients and
zero datum. This approximation is one of the tools which will be used in the proof of Theorem 2.13.

Theorem 3.2. Under Assumption (H) (see Section 2.2), for any ε > 0, R0 > 0 there is a small δ = δ (ε, R0, µ) > 0 such that
for any R ≤ R0, if u is a weak solution to the system (1.1) in B4R b Ω with

1
|B4R|


B4R

|Xu|2 dx ≤ 1,
1

|B4R|


B4R


|F|2 +

aijαβ −


aijαβ

B4R

2

dx ≤ δ2, (3.1)

then there exists a weak solution v to the following homogeneous system with constant coefficients:

Xi


aijαβ

B4R

Xjv
β(x)


= 0 in B4R (3.2)

such that
1
R2

1
|B4R|


B4R

|u − v|2 dx ≤ ε2.
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Proof. Let us first prove the result for a fixed R (and δ possibly depending on R), then we will show how to remove the
dependence on R.

By contradiction, if the result does not hold, then there exist a constant ε0 > 0, and sequences

aijkαβ
∞

k=1
satisfying (2.7),

{uk}
∞

k=1, {Fk}
∞

k=1 such that uk is a weak solution to the system

Xi


aijkαβXju

β

k (x)


= Xif ikα (x) (3.3)

in B4R with

1
|B4R|


B4R

|Xuk|
2 dx ≤ 1,

1
|B4|


B4R


|Fk|2 +

aijkαβ −


aijkαβ

B4R

2

dx ≤

1
k2
, (3.4)

but

1
R2

1
|B4R|


B4R

|uk − vk|
2 dx > ε20 (3.5)

for any weak solution vk of

Xi


aijkαβ

B4R

Xjv
β

k (x)


= 0 in B4R. (3.6)

From (3.4) and Poincaré’s inequality (2.2), we know that

uk − (uk)B4R

∞

k=1 is bounded in HW 1,2 (B4R), then Rellich’s
lemma allows us to find a subsequence of


uk − (uk)B4R


, still denoted by


uk − (uk)B4R


, such that

1
R2

1
|B4R|


B4R

uk − (uk)B4R − u0
2 dx → 0, (3.7)

Xuk → Xu0 weakly in L2, (3.8)

as k → ∞, for some u0 ∈ HW 1,2 (B4R). Since


aijkαβ

B4R

∞

k=1
is bounded in R, it allows a subsequence, still denoted by

aijkαβ

B4R

∞

k=1
, such that

aijkαβB4R − āijαβ

 → 0, as k → ∞, (3.9)

for some constants āijαβ . By (3.4), it follows

aijkαβ → āijαβ in L2 (B4R) , as k → ∞.

Next, we show that u0 is a weak solution of

Xi


āijαβXjuβ(x)


= 0 in B4R. (3.10)

We start from
B4R

aijkαβ (x) Xju
β

k Xiϕ
αdx =


B4R

f ikα Xiϕ
αdx (3.11)

with ϕα ∈ C∞

0 (Ω), and take the limit for k → ∞. By (3.4),
B4R

f ikα Xiϕ
αdx → 0.

Moreover,
B4R

aijkαβ (x) Xju
β

k Xiϕ
αdx =


B4R


aijkαβ (x)− āijαβ


Xju

β

k Xiϕ
αdx +


B4R

āijαβXju
β

k Xiϕ
αdx ≡ Ak + Bk.

Now,

|Ak| ≤ c
aijkαβ (x)− āijαβ


L2(B4R)

Xju
β

k


L2(B4R)

→ 0,
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because aijkαβ (x) → āijαβ in L2 and

Xju

β

k


is bounded in L2. Finally, since Xuk → Xu0 weakly in L2,

Bk →


B4R

āijαβXju
β

0Xiϕ
αdx;

hence
B4R

āijαβXju
β

0Xiϕ
αdx = 0 for any ϕα ∈ C∞

0 (B4R) .

By density, this holds for any ϕα ∈ HW 1,2
0 (B4R), so u0 is a weak solution to (3.10).

Now, let vk be the unique solution to the Dirichlet problemXi


aijkαβ

B4R

Xjvk


= 0 in B4R

vk − u0 ∈ HW 1,2
0 (B4R)

(3.12)

(see Remark 2.9). By (2.7) and using vk − u0 as a test function in the definition of the solution to (3.12) we have

µ


B4R

|Xvk − Xu0|
2 dx ≤


B4R


aijkαβ

B4R


Xjv

β

k − Xju
β

0

 
Xiv

α
k − Xiuα0


dx

= −


B4R


aijkαβ

B4R

Xju
β

0


Xiv

α
k − Xiuα0


dx,

since u0 is a weak solution to (3.10)

=


B4R


āijαβ −


aijkαβ

B4R


Xju

β

0


Xiv

α
k − Xiuα0


dx

≤

āijαβ −


aijkαβ

B4R

 
B4R

Xju
β

0

 Xiv
α
k − Xiuα0

 dx
≤ c (N) max

i,j,α,β

āijαβ −


aijkαβ

B4R

 
B4R

|Xu0|
2 dx

1/2

·


B4R

|Xvk − Xu0|
2 dx

1/2

,

which implies

µ


B4R

|Xvk − Xu0|
2 dx

1/2

≤ c max
i,j,α,β

āijαβ −


aijkαβ

B4R

 
B4R

|Xu0|
2 dx

1/2

. (3.13)

Inequalities (3.9) and (3.13) imply

∥Xvk − Xu0∥L2(B4R) → 0 as k → 0.

This convergence, the fact that vk − u0 ∈ HW 1,2
0 (B4R) and (2.3) imply

∥vk − u0∥L2(B4R) → 0 as k → 0. (3.14)

By (3.7) and (3.14) we can writevk −

uk − (uk)B4R


L2(B4R)

≤
u0 −


uk − (uk)B4R


L2(B4R)

+ ∥vk − u0∥L2(B4R) → 0. (3.15)

On the other hand, vk + (uk)B4R is still a weak solution to (3.6); hence (3.5) implies

1
R2

1
|B4R|


B4R

vk −

uk − (uk)B4R

2 dx > ε20,

which contradicts (3.15). So we have proved the assertion, for some δ possibly depending on ε, R, µ.
Let us now fix a particular R0, and let R be any number ≤ R0. Assume u is a weak solution to system (1.1) in B4R b Ω

satisfying (3.1). Just to simplify notations, assume that the center of B4R is the origin, and define

u (x) =
R0

R
u

D


R
R0


x


;

aαβij (x) = aαβij


D


R
R0


x


;

f iα (x) = f iα


D


R
R0


x

.
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Then, one can check that the functionu solves the system

Xi

aijαβ(x)Xjuβ = Xi
f iα in B4R0 .

To see this, for any φ ∈ C∞

0 (B4R), letφ (x) =
R0
R φ


D


R
R0


x

; thenφ ∈ C∞

0


B4R0


and

B4R0

aαβij (x) Xjuβ (x) Xiφα (x) dx =


B4R0

aαβij


D


R
R0


x
 

Xjuβ
 

D


R
R0


x

(Xiφ

α)


D


R
R0


x

dx

=


R0

R

Q 
B4R

aαβij (y)

Xjuβ


(y) (Xiφ

α) (y) dy

=


R0

R

Q 
B4R

f iα (y) (Xiφ
α) (y) dy

=


B4R0

f iα


D


R
R0


x

(Xiφ

α)


D


R
R0


x

dx

=


B4R0

f αi (x) Xiφα (x) dx.
Also, note that theaijαβ ’s satisfy condition (2.7) with the sameµ. Let δ = δ (ε, R0, µ) be the number found in the first part of

the proof, and assume that u, F, aαβij satisfy (3.1) on B4R for this δ; thenu,F,aαβij satisfy (3.1) on B4R0 for the same δ:

1B4R0



B4R0

|Xu (x)|2 dx =
1B4R0



B4R0

(Xu)D R
R0


x
2 dx

=
1B4R0



R0

R

Q 
B4R

|(Xu) (y)|2 dy =
1

|B4R|


B4R

|(Xu) (y)|2 dy ≤ 1;

1B4R0



B4R0

F2 +

aijαβ −

aijαβB4R0
2

dx =

1
|B4R|


B4R


|F|2 +

aijαβ −


aijαβ

B4R

2

dx ≤ δ.

Hence, by the first part of the proof, there exists a weak solutionv to the following homogeneous system with constant
coefficients:

Xi

aijαβB4R0 Xjvβ(x) = 0 in B4R0

such that
1
R2
0

1B4R0



B4R0

|u −v|2 dx ≤ ε2.

Then, the function

v (x) =
R
R0
v DR0

R


x


satisfies

Xi


aijαβ

B4R

Xjv
β(x)


= 0 in B4R

and

1
R2

1
|B4R|


B4R

|u (x)− v (x)|2 dx =
1
R2

1
|B4R|


B4R

 RR0
uDR0

R


x


−
R
R0
v DR0

R


x
2 dx

=
1
R2
0

1
|B4R|


B4R

uDR0

R


x


−v DR0

R


x
2 dx

=
1
R2
0

1B4R0



B4R0

|u −v|2 dx ≤ ε2.

We have therefore proved that the assertion holds with δ depending on R0 but independent of R ≤ R0. �
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The following technical lemma is adapted from [11, Lemma 4.1, p.27].

Lemma 3.3. Let ψ(t) be a bounded nonnegative function defined on the interval [T0, T1], where T1 > T0 ≥ 0. Suppose that for
any T0 ≤ t ≤ s ≤ T1, ψ satisfies

ψ(t) ≤ ϑψ(s)+
A

(s − t)β
+ B,

where ϑ, A, B, β are nonnegative constants, and ϑ < 1
3 . Then

ψ(ρ) ≤ cβ


A

(R − ρ)β
+ B


, ∀ρ, T0 ≤ ρ < R ≤ T1,

where cβ only depends on β .

We are going to enforce the previous theorem with the following.

Theorem 3.4. For any ε > 0R0 > 0, there is a small δ = δ (ε, R0, µ) > 0 such that for any R ≤ R0, if u is a weak solution of
system (1.1) in B4R b Ω and (3.1) holds, then there exists a weak solution v to (3.2) such that

1
|B2R|


B2R

|Xu − Xv|2 dx ≤ ε2.

Proof. By Theorem 3.2, we know that for any η > 0, there exist a small δ = δ (η, R0, µ) > 0 and a weak solution v of (3.2)
in B4R, such that

1
R2

1
|B4R|


B4R

|u − v|2 dx ≤ η2, (3.16)

provided (3.1) holds.
Let us note that u − v is a weak solution to the system

Xi


aijαβ (x) Xj


uβ − vβ


(x)


= Xi


f iα (x)−


aijαβ (x)−


aijαβ

B4R


Xjv

β


(3.17)

in B4R. For any 2R ≤ s < t ≤ 3R, we choose a cutoff function ϕ (x)which satisfies

0 < ϕ (x) ≤ 1 in B3R, ϕ (x) ≡ 1 in Bs, ϕ (x) ≡ 0 in B3R \ Bt

and

|Xϕ (x)| ≤
c

t − s
in B4R.

Taking (u − v) ϕ as a test function, it follows by (3.17) that

µ


Bs

|X (u − v)|2 dx ≤


Bt
ϕ (x) aijαβ (x) Xj


uβ − vβ


Xi (uα − vα) dx

=


Bt


f iα (x)−


aijαβ (x)−


aijαβ

B4R


Xjv

β


Xi ((uα − vα) ϕ) dx

−


Bt
aijαβ (x) (u

α
− vα) Xj


uβ − vβ


Xiϕdx.

By the properties of ϕ, Young’s inequality and (2.7),
Bs

|Xu − Xv|2 dx ≤ c

Bt


|F| + max

i,j,α,β

aijαβ (x)−


aijαβ (x)


B4R

 |Xv|2

dx

+
1
4


Bt

|Xu − Xv|2 dx +
c

(t − s)2


Bt

|u − v|2 dx

≤ c

4R

|F|2 dx + sup
B3R

|Xv|2 · max
i,j,α,β


B4R

aijαβ (x)−


aijαβ (x)


B4R

2 dx
+

c

(t − s)2


B4R

|u − v|2 dx +
1
4


Bt

|Xu − Xv|2 dx.
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Setting

ψ (s) =


Bs

|Xu − Xv|2 dx,

B = c

B4R

|F|2 dx + sup
B3R

|Xv|2 · max
i,j,α,β


B4R

aijαβ (x)−


aijαβ (x)


B4R

2 dx,
A =


B4R

|u − v|2 dx, β = 2,

by Lemma 3.3 we deduce
B2R

|Xu − Xv|2 dx ≤
c
R2


B4R

|u − v|2 dx + c

B4R

|F|2 dx

+ c sup
B3R

|Xv|2 · max
i,j,α,β


B4R

aijαβ (x)−


aijαβ (x)


B4R

2 dx. (3.18)

By Theorem 2.10, since v − uB4R is still a solution to the system (3.2) in B4R we can write

sup
B3R

|Xv| ≤
c
R

|BR|
−1/2

v − uB4R


L2(B4R)

≤
c
R

|BR|
−1/2


∥u − v∥L2(B4R) +

u − uB4R


L2(B4R)


by (3.16), (2.2) and assumption (3.1) on u

≤ cη + c |BR|
−1/2

∥Xu∥L2(B4R) ≤ c (η + 1) ≤ N0, (3.19)

for some absolute constant N0 when η is, say, any number ≤ 1.
By (3.18) and (3.19) we have

1
|B2R|


B2R

|Xu − Xv|2 dx ≤
c

|B4R|


B4R

|F|2 dx +
cN0

|B4R|
max
i,j,α,β


B4R

aijαβ (x)−


aijαβ

B4R

2 dx
+

c
R2

1
|B4R|


B4R

|u − v|2 dx,

by (3.16) and (3.1)

≤
c

|B4R|


B4R


|F|2 + max

i,j,α,β

aijαβ (x)−


aijαβ (x)


B4R

2

dx + cη2

≤ c

δ2 + η2


< ε2,

for a suitable choice of η, and after possibly diminishing δ. This ends the proof. �

4. Estimates on the maximal function of |Xu|2

Definition 4.1. Let BR b Ω . For every f ∈ L1 (BR), define the Hardy–Littlewood maximal function of f by

MBR (f ) (x) = sup
r>0

1
|Br (x) ∩ BR|


Br (x)∩BR

|f (y)| dy.

Since (BR, dX , dx) is a space of homogeneous type (see Remark 2.7), by [16, Theorem 2.1 p. 71] the following holds.

Lemma 4.2. Let f ∈ L1 (BR), then

(i) MBR (f ) (x) is finite almost everywhere in BR;
(ii) for every α > 0,x ∈ BR : MBR (f ) (x) > α

 ≤
c1
α


BR

|f (y)| dy;
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(iii) if f ∈ Lp (BR) with 1 < p < ∞, then MBR (f ) ∈ Lp (BR) andMBR (f )

Lp(BR)

≤ cp ∥f ∥Lp(BR) ,

where the constants cp only depend on p and G (but are independent of BR).

The last statement about the dependence of the constants requires some explanation. In any space of homogeneous type
these constants depend on the two constants of the space, namely the one appearing in the ‘‘quasitriangle inequality’’ (2.4)
and the doubling constant appearing in (2.5). In our case the first constant is 1 (since dX is a distance) and the second is
independent of R, by Remark 2.7. Hence cp is independent of R.

Theorem 4.3. There exists an absolute constant N1 such that for any ε > 0, R0 > 0, there is a small δ = δ (ε, R0, µ) > 0 such
that for any R ≤ R0/2, z ∈ BR (x) ⊂ B11R (x) b Ω and 0 < r ≤ 2R, if u is a weak solution of (1.1) in B11R (x) with

Br (z) ∩

x ∈ BR (x) : MB11R(x)


|Xu|2


(x) ≤ 1


∩

x ∈ BR (x) : MB11R(x)


|F|2


(x) ≤ δ2


≠ ∅ (4.1)

and the coefficients aijαβ (x) are (δ, 4r)-vanishing in BR (x), thenBr (z) ∩

x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N2

1

 < ε |Br (z)| . (4.2)

Proof. Fix ε, R0 > 0; the number δ will be chosen later. By (4.1), there exists a point x0 ∈ Br (z), such that for any ρ > 0,

1Bρ (x0) ∩ B11R (x)


Bρ (x0)∩B11R(x)

|Xu|2 dx ≤ 1, (4.3)

1Bρ (x0) ∩ B11R (x)


Bρ (x0)∩B11R(x)

|F|2 dx ≤ δ2. (4.4)

Since z, x0 ∈ BR (x) and r ≤ 2R, we have the inclusions: B4r (z) ⊂ B5r (x0) ⊂ B11R (x) and B5r (x0) ⊂ B6r (z). Then by (4.4)
with ρ = 5r we have that

1
|B4r (z)|


B4r (z)

|F|2 dx ≤
|B6r (z)|
|B4r (z)|

1
|B5r (x0)|


B5r (x0)

|F|2 dx ≤


6
4

Q

δ2. (4.5)

Similarly, by (4.3) we find

1
|B4r (z)|


B4r (z)

|Xu|2 dx ≤


6
4

Q

. (4.6)

By (4.5), (4.6) and the assumption on aijαβ (x), we can apply Theorem 3.4 (with u replaced by
 4
6

Q
u and F replaced by

 4
6

Q F)
on the ball B4r (z) (recall that r ≤ R0) and obtain that for any η > 0, there exists a small δ = δ (η, R0, µ) and aweak solution
v to

Xi


aijαβ

B4r (z)

Xjv


= 0 in B4r (z)

such that

1
|B2r (z)|


B2r (z)

|X (u − v)|2 dx ≤ η2. (4.7)

Also, recall the interior HW 1,∞ regularity of v (3.19):

∥Xv∥2
L∞(B3r (z)) ≤ N2

0 . (4.8)

Now, pick

N2
1 = max


5Q

cd
, 4N2

0


. (4.9)

Then we claim that
x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N2

1


∩ Br (z)

⊂

x ∈ BR (x) : MB2r (z)


|X (u − v)|2


(x) > N2

0


∩ Br (z) . (4.10)
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To see this, suppose

x1 ∈

x ∈ BR (x) ∩ Br (z) : MB2r (z)


|X (u − v)|2


(x) ≤ N2

0


. (4.11)

When ρ ≤ r , it follows that Bρ (x1) ⊂ B2r (z) ⊂ B5R (x), then (4.11) and (4.8) imply

1Bρ (x1) ∩ B11R (x)


Bρ (x1)∩B11R(x)

|Xu|2 dx =
1Bρ (x1)


Bρ (x1)

|Xu|2 dx

≤
2Bρ (x1)


Bρ (x1)


|X (u − v)|2 + |Xv|2


dx ≤ 4N2

0 ≤ N2
1 . (4.12)

When ρ > r , since x1, x0 ∈ Br (z) we have d (x1, x0) < 2r < 2ρ; it follows that Bρ (x1) ⊂ B3ρ (x0) ⊂ B5ρ (x1). Then by
Remark 2.7 and (4.3) we have

1Bρ (x1) ∩ B11R (x)


Bρ (x1)∩B11R(x)

|Xu|2 dx ≤
1

cd
Bρ (x1)


B3ρ (x0)∩B11R(x)

|Xu|2 dx

=
5Q

cd
B5ρ (x1)



B3ρ (x0)∩B11R(x)

|Xu|2 dx

≤
5Q

cd
B3ρ (x0) ∩ B11R (x)



B3ρ (x0)∩B11R(x)

|Xu|2 dx

≤
5Q

cd
≤ N2

1 . (4.13)

By (4.12) and (4.13), we have

x1 ∈

x ∈ BR (x) : MB11R(x)


|Xu|2


≤ N2

1


∩ Br (z) . (4.14)

Thus, inclusion (4.10) follows from the fact that (4.11) implies (4.14).
By (4.10), Lemma 4.2 (ii) and (4.7), we havex ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N2

1


∩ Br (z)


≤
x ∈ B2r (z) : MB2r (z)


|X (u − v)|2


(x) > N2

0


≤

c
N2

0


B2r (z)

|X (u − v)|2 dx

≤ cη2 |B2r (z)| = c2Qη2 |Br (z)|
= ε2 |Br (z)| .

For a fixed ε, we have finally chosen η so that c2Qη2 = ε2 and picked the corresponding δ depending on R0, µ and η, that is
on R0, µ, ε. This finishes our proof. �

Corollary 4.4. For any ε > 0, R0 > 0, there is a small δ = δ (ε, R0, µ) > 0 such that for any R ≤ R0/2, z ∈ BR (x) , 0 < r ≤ 2R,
if u is a weak solution of (1.1) in B11R (x) b Ω , the coefficients aijαβ (x) are (δ, 4r)-vanishing in BR (x) andx ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N2

1


∩ Br (z)

 ≥ ε |Br (z)| ,

then

Br (z) ∩ BR (x) ⊂

x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > 1


∪

x ∈ BR (x) : MB11R(x)


|F|2


(x) > δ2


.

5. Lp estimate on |Xu|

In this section we exploit the local estimates on the maximal function of |Xu|2 proved in the previous section in order to
prove the desired Lp bound. The starting point is the following useful lemma about the estimate of the Lp norm of a function
by means of its distribution function.

Lemma 5.1 (See [10, p. 62]). Let θ > 0,m > 1 be constants, p ∈ (1,∞). Then there exists c > 0 such that for any nonnegative
and measurable function f inΩ ,

f ∈ Lp (Ω) if and only if S =


l≥1

mlp
x ∈ Ω : f (x) > θml < ∞
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and
1
c
S ≤ ∥f ∥p

Lp(Ω) ≤ c (|Ω| + S) .

Lemma 5.2 (Vitali). Let F be a family of dX -balls in Rn with bounded radii. There exists a finite or countable sequence {Bi} ⊂ F
of mutually disjoint balls such that

B∈F

B ⊂


i

5Bi

where 5B is the ball with the same center as B and radius five times big.

The proof is identical to that of the Euclidean case, with the Euclidean distance replaced by dX here.

Lemma 5.3. Let 0 < ε < 1, C and D be twomeasurable sets satisfying C ⊂ D ⊂ BR (x) ⊂ Ω, |C | < ε |BR (x)| and the following
property:

∀x ∈ BR (x) , ∀r ≤ 2R, |C ∩ Br (x)| ≥ ε |Br (x)| H⇒ Br (x) ∩ BR (x) ⊂ D. (5.1)

Then

|C | ≤ ε
5Q

cd
|D| ,

where cd is the constants in (2.6).

Proof. For any x ∈ C, C ⊂ BR (x) ⊂ B2R (x); hence

|C ∩ B2R (x)| = |C | < ε |BR (x)| < ε |B2R (x)| .

On the other hand, by Lebesgue differentiation theorem, for a.e. x ∈ C,

lim
r→0

|C ∩ Br (x)|
|Br (x)|

= 1;

hence for a.e. x ∈ C there is an rx ≤ 2R such that for all r ∈ (rx, 2R) it holdsC ∩ Brx (x)
 ≥ ε

Brx (x)
 and |C ∩ Br (x)| < ε |Br (x)| . (5.2)

By Lemma 5.2, there are x1, x2, . . . ∈ C , such that Brx1
(x1) , Brx2

(x2) , . . . are mutually disjoint and satisfy
k

B5rxk
(xk) ∩ BR (x) ⊃ C .

By (5.2) and (2.1), we knowC ∩ B5rxk
(xk)

 < ε

B5rxk
(xk)

 = ε5Q
Brxk

(xk)
 .

Also,

|C | =


k

B5rxk
(xk) ∩ C

 ≤


k

B5rxk
(xk) ∩ C


≤ ε5Q


k

Brxk
(xk)


≤ ε

5Q

cd


k

Brxk
(xk) ∩ BR (x)

 ,
where the last inequality follows since BR (x) is dX -regular (see Remark 2.7).Moreover since the Brxk

(xk) aremutually disjoint
the last quantity equals

= ε
5Q

cd


k


Brxk

(xk) ∩ BR (x)
 ≤ ε

5Q

cd
|D| ,

since, by assumption (5.1), Brxk
(xk) ∩ BR (x) ⊂ D. This completes the proof. �
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Theorem 5.4. For any ε > 0, R0 > 0 there is a small δ = δ (ε, R0, µ) > 0 such that for any R ≤ R0/2, if u is a weak solution
of (1.1) in B11R (x) b Ω , the coefficients aijαβ (x) are (δ, 8R)-vanishing in BR (x) andx ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N2

1

 < ε |BR (x)| (5.3)

(where N1 is like in Theorem 4.3), then for any positive integer m,

x ∈ BR (x) : MB11R(x)

|Xu|2


(x) > N2m

1

 ≤

m
i=1

εi1

x ∈ BR (x) : MB11R(x)

|F|2


(x) > δ2N2(m−i)

1


+ εm1

x ∈ BR (x) : MB11R(x)

|Xu|2


(x) > 1


where ε1 = ε5Q /cd.

Proof. Fix ε, R0 > 0 and pick δ = δ (ε, R0, µ) as in Corollary 4.4. Wewill prove this assertion by induction onm. Form = 1,
we want to apply Lemma 5.3 to

C :=

x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N2

1


,

D :=

x ∈ BR (x) : MB11R(x)


|F|2


(x) > δ2


∪

x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > 1


.

Since N1 ≥ 1, C ⊂ D ⊂ BR (x). Also, by assumption |C | < ε |BR (x)|. Let x ∈ BR (x) such that

|C ∩ Br (x)| ≥ ε |Br (x)| .

Then by Corollary 4.4

Br (x) ∩ BR (x) ⊂ D;

hence by Lemma 5.3

|C | ≤ ε
5Q

cd
|D|

which is our assertion form = 1.
Now assume that the assertion is valid for some m. Let u be a weak solution to (1.1) in B11R (x) satisfying (5.3). Set

u1 = u/N1 and F1 = F/N1, then u1 is a weak solution of

Xi


aijαβ (x) Xju1


= XiF1

in B11R (x) b Ω , and satisfiesx ∈ BR (x) : MB11R(x)

|Xu1|

2 (x) > N2
1

 =
x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N4

1


<
x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > N2

1

 < ε |BR (x)| .

By the induction assumption onm, we havex ∈ BR (x) : MB11R(x)

|Xu|2


(x) > N2(m+1)

1

 =
x ∈ BR (x) : MB11R(x)


|Xu1|

2 (x) > N2m
1


≤

m
i=1

εi1

x ∈ BR (x) : MB11R(x)

|F1|2


(x) > δ2N2(m−i)

1

+ εm1

x ∈ BR (x) : MB11R(x)

|Xu1|

2 (x) > 1


=

m
i=1

εi1

x ∈ BR (x) : MB11R(x)

|F|2


(x) > δ2N2(m+1−i)

1

+ εm1

x ∈ BR (x) : MB11R(x)

|Xu|2


(x) > N2

1

 . (5.4)

On the other hand, by the assertion valid form = 1,x ∈ BR (x) : MB11R(x)

|Xu|2


(x) > N2

1

 ≤ ε1
x ∈ BR (x) : MB11R(x)


|F|2


(x) > δ2


+ ε1

x ∈ BR (x) : MB11R(x)

|Xu|2


(x) > 1

 . (5.5)
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Putting (5.5) into (5.4) we getx ∈ BR (x) : MB11R(x)

|Xu|2


(x) > N2(m+1)

1

 ≤

m
i=1

εi1

x ∈ BR (x) : MB11R(x)

|F|2


(x) > δ2N2(m+1−i)

1


+ εm+1

1

x ∈ BR (x) : MB11R(x)

|Xu|2


(x) > 1

+ εm+1
1

x ∈ BR (x) : MB11R(x)

|F|2


(x) > δ2


=

m+1
i=1

εi1

x ∈ BR (x) : MB11R(x)

|F|2


(x) > δ2N2(m+1−i)

1

+ εm+1
1

x ∈ BR (x) : MB11R(x)

|Xu|2


(x) > 1


which is the desired assertion form + 1. This completes the proof. �

We can finally come to the following.

Proof of Theorem 2.13. Fix R0, let ε > 0 to be chosen later, and pick δ = δ (ε, R0, µ) as in Theorem 5.4. For λ > 0, let
uλ =

u
λ
, Fλ =

F
λ
. We claim that we can take λ large enough (depending on ε, u and F) so thatx ∈ BR (x) : MB11R(x)


|Xuλ|2


(x) > N2

1

 < ε |BR (x)| (5.6)

and
∞
k=1

Nkp
1

x ∈ BR (x) : MB11R(x)

|Fλ|2


(x) > δN2k

1

 ≤ 1. (5.7)

Actually, since F ∈ Lp

B11R (x) ; MN×q


with p > 2, we have MB11R(x)


|Fλ|2


(x) ∈ L

p
2 (B11R (x)) by Lemma 4.2. Applying

Lemma 5.1 with f = MB11R(x)

|Fλ|2


, θ = δ,m = N2

1 ,Ω = BR (x) and p replaced by p/2, there is a positive constant c
depending only on δ, p and N1, such that

∞
k=1

Nkp
1

x ∈ BR (x) : MB11R(x)

|Fλ|2


(x) > δN2k

1

 ≤ c
MB11R(x)


|Fλ|2

p/2
Lp/2(B11R(x))

≤ c ∥Fλ∥
p
Lp(B11R(x))

.

Also, by Lemma 4.2 we havex ∈ BR (x) : MB11R(x)

|Xuλ|2


(x) > N2

1

 =
x ∈ BR (x) : MB11R(x)


|Xu|2


(x) > λ2N2

1

 ≤
c

λ2N2
1

∥Xu∥2
L2(B11R(x))

Hence we can take

λ = c


∥Xu∥L2(B11R(x);RN)

ε1/2 |BR (x)|1/2
+ ∥F∥Lp(B11R(x))


(5.8)

for some constant c depending on δ, p,N1; hence c = (ε, R0, p,G), and get (5.6) and (5.7) satisfied.
Next, by (5.6) we can apply Theorem 5.4 to uλ for this large λ, writing

∞
k=1

Nkp
1

x ∈ BR (x) : MB11R(x)

|Xuλ|2


(x) > N2k

1


≤

∞
k=1

Nkp
1


k

i=1

εi1

x ∈ BR (x) : MB11R(x)

|Fλ|2


(x) > δ2N2(k−i)

1


+ εk1

x ∈ BR (x) : MB11R(x)

|Xuλ|2


(x) > 1

 

=

∞
i=1


Np

1ε1
i ∞

k=i

Np(k−i)
1

x ∈ BR (x) : MB11R(x)

|Fλ|2


(x) > δ2N2(k−i)

1


+

∞
i=1


Np

1ε1
i x ∈ BR (x) : MB11R(x)


|Xuλ|2


(x) > 1


by (5.7)

=

∞
i=1


Np

1ε1
i
(1 + |BR (x)|) < 1 + |BR (x)|
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taking ε so that Np
1ε1 = 1/2. We have finally chosen ε small enough, depending on p and G, and a corresponding δ =

δ (ε, R0, µ) = δ (p,G, R0, µ).
Therefore we can apply Lemma 5.1 to f = MB11R(x)


|Xuλ|2


(x) andm = N2

1 gettingMB11R(x)

|Xuλ|2

p/2
Lp/2(BR(x))

≤ c

1 + RQ 

with c = c (p,G), which by (5.8) impliesMB11R(x)

|Xu|2

1/2
Lp/2(BR(x))

≤ c

∥Xu∥L2(B11R(x)) + ∥F∥Lp(B11R(x))


with c = c (R, R0, p,G), and recalling that |f (x)| ≤ MB11R(x) (f ) (x) for a.e. x, we get

∥Xu∥Lp(BR(x)) ≤ c

∥Xu∥L2(B11R(x)) + ∥F∥Lp(B11R(x))


.

This completes the proof of Theorem 2.13. �
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