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1. Introduction

Let

n
Xi=) bj®dy, i=12....q,

j=1
be a family of real smooth vector fields defined in some bounded domain £2 C R" (q < n) and satisfying Hérmander’s
condition: the Lie algebra generated by Xj, ..., X, spans R" at any point of £2. Since Hormander’s famous paper [24], there
has been tremendous work on the geometric properties of Hormander’s vector fields; see [28,25,20-22,26,27], and refer-
ences therein. Meanwhile, regularity for linear degenerate elliptic equations involving vector fields has been investigated
and many results have been proved; see for instance [19,30,2-7,33,26,27] and references therein; as for subelliptic systems

structured on Hérmander's vector fields, we can quote [17,35,31].

In this paper we consider divergence degenerate elliptic systems structured on Hérmander’s vector fields in Carnot
groups. Namely (here we briefly state our assumptions and result; precise definitions and assumptions will be given in

Section 2.1), let Xy, ..., X, be the canonical basis of the space of horizontal vector fields in a homogeneous Carnot group
G = (R", o); we consider the system
X; (agﬁ(x)xjuﬂ) = Xf! (1.1)
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in some domain 2 C R"wherea, 8 =1,...,N,i,j=1,2,...,¢.F= (f}) € [’ (2; M"*9) 2 < p < o0) isagiven N x q
matrix. In (1.1) and throughout the paper, the summation is understood for repeated indices. If the tensor {az 5 (X) } satisfies

the strong Legendre condition (see (2.7)), by the Lax-Milgram theorem the natural functional framework for solutions to
(1.1)is the Sobolev space HW,” (£2; R"), so the regularity problem for (1.1) amounts to asking: if F € LP (£2; M"*9) for some
p > 2,can we say thatu € HW P, at least locally? We will prove an affirmative answer to this question (see Theorem 2.12),
under the assumption that the coefficients ag 5 belong to the space VMO, (§2), with respect to the Carnot-Carathéodory
distance induced by the vector fields. Under this respect, this result is in the same spirit as the [P regularity results
proved for nonvariational elliptic equations by Chiarenza et al. [14,15], for elliptic systems by Chiarenza et al. [13] (see
also [12]), and for nondivergence equations structured on Hormander’s vector fields by Bramanti and Brandolini [2,3],
while analogous regularity estimates in Morrey spaces have been proved for instance by Di Fazio et al. in [18], and by
Palagachev-Softova in [29]. However, the technique of the proof in the present case is completely different. Namely, while
in all the aforementioned papers [P or Morrey estimates are proved by exploiting representation formulas for solutions
and singular integral estimates, in the case of subelliptic systems, even on Carnot groups, no result about representation
formulas by means of homogeneous fundamental solutions seems to be known. Hence we have to make use of a different
technique, which has been designed and exploited in a series of papers by Byun-Wang to deal with elliptic equations and
systems, also in very rough domains; see [34,8,9] and references therein. Namely, the key technical point is a series of local
estimates involving the maximal function of |Xu|? (Sections 4 and 5) which hold under an assumption of smallness of the
mean oscillation of the coefficients. One of the tools used to prove these local estimates is the possibility of approximating,
locally, the solution to a system with small datum and small oscillation of the coefficients by the solution to a different
system, with constantcoefficients (Section 3). In turn, the solution to a constant coefficients system on a Carnot group is
known to satisfy an L gradient bound (see Theorem 2.10) which turns out to be a key tool in our proof. This result about
systems with constant coefficients in Carnot groups has been proved by Shores [31], and represents one of the main reasons
why we have restricted ourselves to the case of Carnot groups instead of considering general Hormander’s vector fields.

This paper represents the first case of study of LP estimates on the “subelliptic gradient” Xu for subelliptic systems. Di
Fazio and Fanciullo in [17] have deduced interior Morrey regularity in spaces L>* for weak solutions to the system (1.1)
under the assumption that the coefficients ag belong to the class VMOy N L*°, while Schauder-type estimates have been
proved for subelliptic systems by Xu and Zuily [35].

This paper is organized as follows. In Section 2 we recall some basic facts about Carnot groups and state precisely
our assumptions and main results; in Section 3 we prove the approximation result for local solutions to the original
system by means of solutions to a system with constant coefficients; in Section 4 we prove some local estimates on the
Hardy-Littlewood maximal function of [Xu|?, and in Section 5 we come to the proof of our main result.

2. Preliminaries and statement of the results
2.1. Background on Carnot groups

We are going to recall here a few facts about Carnot groups that we will need in the following. For the proofs, more
properties, and examples, we refer the reader to the paper [19], the books [1] and [32, Chapters XII-XIII].

Definition 2.1 (Homogeneous Carnot Groups). A homogeneous group G is the set R" endowed with a Lie group operation o
(“translation™), where the origin is the group identity, and a family {D (1)}, ., of group automorphisms (“dilations”), acting
as follows:

D(A) (X1, X2, ..., Xn) = (A%1x1, A%%%p, ..., A%"%,) VA >0

for some fixed exponents 0 < oy < &y < --- < op. The number Q = ZJ';] a; is called the homogeneous dimension of G.
We say that a vector field X = Z}‘Zl b; (x) Oy, Is left invariant if for any smooth function f one has

X(fox)=X)yox) Vx,yeG;
we say that X is k-homogeneous if for any smooth function f one has
XFDOMWx) =2X)DR)x) Vr>0,xeG.

LetX; (i = 1,2, ..., n) be the unique left invariant vector field on G which at the origin coincides with d,. We assume
that for some integer ¢ < n the vector fields X;, X, ..., X; are 1-homogeneous and satisfy Hormander’s condition in R":
the Lie algebra generated by the X;’s at any point has dimension n. Under these assumptions we say that G is a homogeneous
Carnot group and that {X1 ,Xo, o, Xq} is the canonical basis of the space of horizontal vector fields.

The properties required in the above definition have a number of consequences: the exponents «; are actually positive
integers, the Lie algebra of G is stratified, homogeneous and nilpotent; the vector fields X; have polynomial coefficients.
Moreover, the Lebesgue measure of R" is the Haar measure in G.
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Like for any set of Hormander’s vector fields, it is possible to define the corresponding Carnot-Carathéodory distance dy,
as follows.

Definition 2.2 (CC-distance). For any § > 0, let C5 be the set of absolutely continuous curves ¢ : [0, 1] — R" such that

q
@' (t) = Zai ) Xi (¢ (t)) with |g; (t)] <8 forae.t €0,1].

i=1
Then
dx (x,y) =inf{§ > 0:3¢ € Cswith¢ (0) =x,¢ (1) =y}.
The function dx turns out to be finite for any couple of points, and is actually a distance, called Carnot-Carathéodory
distance; due to the structure of Carnot group, dx is also left invariant and 1-homogeneous on G. Let
Bx)={yeG:dx(x,y) <r}

be the metric ball of center x and radius r in G. Since the Lebesgue measure in R" is the Haar measure on G, one has (writing
|A| for the measure of A)

B ()| = wer€, (2.1)

where Q is the homogeneous dimension of G and wyg is a positive constant.
Next, we need to define the function spaces we will use in the following.

Definition 2.3 (Horizontal Sobolev Spaces). For any p > 1 and domain 2 C G, let us define the horizontal Sobolev space:
HW'P (2;RY) = {u e 1P (25 RY) : llullgwrr (@) < oo}
with the norm

o (gmy = Nllip (my + 1Xutllp gy

having set

N 1/2
. 2
lullp (v = Nulllpe) .  with |u|=<Z|““|> and
a=1

N 1/2
IXullp (izny = I1Xullp(g) . with |Xu|=(ZZ|x,-u“|2) :

a=1 i=1

Also, we define the space HW,,” (£2; RV) as the space of functions u such that u¢p € HW' (2; RV) for any ¢ € C5° (£2)
and the space HWS”’ (2; RN) as the closure of C5° (£2; RV) in the norm HW'”P (£2; R).

Definition 2.4 (BMO-type Spaces). For any 2’ € £2, let Ry be a number such that B, (x) € §2 forany x € £’ and r < Rq. For
anyf € LL_(£2) andr < Ry, let

N/ Ros () = sup

2
— f (%) = fo,000 | X,
x0€82',0<p=r |Bp (X0)| By (x0) ’ o ’

where fg o) = IBTlxwl pr oy f ) dx.
We say that f is (8, R)-vanishing in £2’ (for a couple of fixed positive numbers §, R, with R < Ry) if

N ro.s (R) < 6.
We say that f € VMO, (£2) if for any 2’ € £2 and Ry such that B, (x) € 2 forany r < Ry and x € £2’, we have
Ne' Ryf () — 0 asr — 0.
The function ng g, f is called the local VMO modulus of f on £2”.

We will use the following well-known result by Jerison (see [25, Theorem 2.1] for the case p = 2 and [25, Section 6] for

p#2).
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Theorem 2.5 (Poincaré’s Inequality). For 1 < p < oo there exists a positive constant ¢ = c (G, p), such that forany u € HW P
(Br) ,

Hu — Usg ”LP(BR) < R[IXullp g - (22)
If u e HW,” (Bg),
lullp g < cRIIXullp gy - (23)

The previous theorem holds for a general system of Héormander’s vector fields; in that case, however, some restriction on
the center and radius of the ball B applies (see [25, Theorem 2.1]); on a Carnot group, instead, due to the dilation invariance
of the inequalities (2.2) and (2.3), these hold for any ball Bz and with an “absolute” constant c.

We will also make use of the following.

Definition 2.6 (Space of Homogeneous Type, See [16]). LetSbeasetandd : S xS — [0, oo) a quasidistance, that is, for some
constant ¢ > 1 one has

dx,y)=0<=x=y
dx,y) =d(y,x)
dx,y) <cld(x,z) +d(z,y)] (2.4)

for all x, ¥,z € S. The balls defined by d induce a topology in S; let us assume that the d-balls are open in this topology.
Moreover, assume that there exists a regular Borel measure p on S, such that the “doubling condition” is satisfied:

w (B (%) < cu (B (%)), (2.5)

foreveryr > 0, x € S and some positive constant c. Then we say that (S, d, u) is a space of homogeneous type.

Remark 2.7. Note that in our context any Carnot-Carathéodory ball By (xo) is a dx-regular domain (see for instance
[4, Lemma 4.2]), that is there exists a positive constant ¢4 such that

Bg (xo) N Br (X)| = cq |[B- ()| Vr >0, Vx € Bg (Xo) - (2.6)

This implies that (Bg (xo) , dx, dx) is a space of homogeneous type. Moreover, a simple dilation argument shows that, in a
Carnot group, the constant c4, and therefore the doubling constant of (Bg (xo) , dx, dx), is independent of R.

2.2. Assumptions and known results about degenerate systems
The general assumptions which will be in force throughout the paper are collected in the following.

Assumption (H). We assume that G is a homogeneous Carnot group in R" and {X1, Xo, i, Xq} is the canonical basis of the
space of horizontal vector fields in G (see Definition 2.1). We assume that the coefficients

in(1.1) are real valued, bounded measurable functions defined in §2 and satisfying the strong Legendre condition: there exists
a constant u > 0 such that

ulEl < al,ErE! < p' g (2.7)
forany & € MV*9,a.e.x € 2.

We recall the standard definition of weak solution.

Definition 2.8. We say that u € HW'? (22; R") is a weak solution to the system (1.1), if it satisfies
/ agﬂ (OXiuP X" dx = / fiXip®dx
2 e

forany ¢ € HW,? (2; RV).

Recall that on a Carnot group the transpose of a vector field is just the opposite: X;* = —X;. Hence the above definition
of weak solution is consistent with the way the system (1.1) is written.
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Remark 2.9. Let By C 2 be any metric ball. If f1 € L? (Bg) and uy € HW!? (Bg), then by assumption (2.7) and Poincaré’s
inequality (2.3) we can apply Lax-Milgram’s theorem, and conclude that there exists a unique solution u € HW -2 (BR; RN)

to system (1.1) such thatu — ug € HWOL2 (Br). Moreover, the following a priori estimate holds:
||u||HW1<2(BR;RN) =c (”F”LZ(BR;MNXq) + ”uO”HW‘«Z(BR;RN)> (2.8)
for some constant ¢ only depending on G, u, R (see [11, Chapter 8] for a proof of this fact in the elliptic case).

The next result is taken from [31, Corollary 19]. See also [23], where the analogous parabolic inequality is proved.
Theorem 2.10. Let v € HW'2 (B (xo, KR) ; RV) be a solution to the system
X; (aZﬁvaﬂ) —0 inB(x, KR)
with constant coefficients azﬁ satisfying (2.7) and some K > 1. Thenv € C* (B (%0, KR) ; }RN); moreover

1
sup |Xv> <R 2——— |v|* dx,

Br(Xo) [Bxr (X0)| JBpixg)
where the positive constant c¢ depends on K, w, G, N but is independent of xq, R and v.

The following result can be proved in a completely standard way by suitable cutoff functions (for the analogous elliptic
version see for instance [11, Theorem 2.1 p.134]).

Theorem 2.11 (Caccioppoli’s Inequality). Let u € HW -2 (BR x); RN) be a weak solution to (1.1) in B (X) C 2. There exists a
constant ¢ > 0 depending on G, N, R such that for any p € (0, R),

f [Xu (x)|?dx < ¢ [12 lu (x)|> dx + / IF (x)|? dx} ) (2.9)
By(® R—=p) Jrw BR ()

2.3. Statement of the result
We now state precisely the main result of this paper.

Theorem 2.12. Under Assumption (H), let the agﬂ s belong to VMO (§2) and let 2’ € §2,2 < p < oo. Then there is a positive
constant ¢ depending on G, i, p, §2, 2 and the local VMO moduli of the agﬁ's in 2’ such that if F = () € [? (£2; MV*9) and
u € HW'? (£2; RN) is a weak solution to (1.1) in £2, thenu € HW'P (22'; RV) and

o (@) < € (Pl + 2oz ) (2.10)

In order to prove Theorem 2.12, we will prove the following local result.

Theorem 2.13. Under Assumption (H), for any X € £2, Ry > 0 such that By, (X) C £2 there exists § = 6 (p, G, Ry, u) > 0
such that forany R < Ry, if the coefficients azﬁ are (8, 8R)-vanishingin By (x) andp € (2, 00), then thereis a positivec = c(R, Ry,
p. G) such that if F = (f}) € I (By1r %) ; MN*9) and u € HW'? (By1z (%) ; RN) is a weak solution of (1.1) in Byig (%), then

u € HW'P (Bg (x); RV) and
XU (geerry < € (IFllip ey genma=ay + 1Xutll 25, iz ) - (2.11)

Proof of Theorem 2.12 from Theorem 2.13. For fixed domains 2" € £2” € £2, pick Ry such that Byog, (x) C £2” foranyx €
£2'.For this Ry and a fixed p € (2, 00), let § be as in Theorem 2.13. Since the agﬁ’s belong to VMO, (£2), there existsR < Ry, R

depending on £2, £2', Ry, 8, such that the agﬁ’s are (8, 8R)-vanishing in By (x). Therefore by Theorem 2.13, (2.11) holds for
any such x and R. Next, we apply Caccioppoli’s inequality (2.9), getting

1
LT TR —
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which inserted in (2.11) gives
Xl gy =< € (R) {IFllip s,y av<ay + 128 00:0m) } - (2.12)
On the other hand, by Poincaré’s inequality (2.2) we have

Hua - ugR(Y) HLP(BR(@) + ‘ugR®| |BR (})|1/P
1/p—1/2.

IA

1 Nl By

IA

R [IX* || 1p gy + U 112 (8p ) 1Br ()]
hence

Il iy < € R D) { 1Kl gyocany + 02 (spnay |
which together with (2.12) gives

”u”HW]«P(BR(D:RN) =cC {”FHIP(B]ZR()?);MNXQ) + ||u||L2(312R(>7);RN)} .
A covering argument then gives (2.10). O

Itis worthwhile to point out that, as we will see from the proof of Theorem 2.13 in Section 5, the following bound, stronger
than (2.11), is actually established:

2\ [|1/2
” MB,1r® (|Xu| )”lp/z(BR(;);RN) =cC {”F”U’(BnR(@:MNXq) + ||u||L2(B12R(§);RN)} ) (2.13)

where M is the Hardy-Littlewood maximal function (see Section 4).

Remark 2.14. Note that what allows to exploit the VMO assumption on the coefficients is the fact that the number § in
Theorem 2.13 depends on Ry but not on R < Rg, which allows shrinking R without changing §, to get the (8, R)-vanishing
condition satisfied. Under this regard, our result is very different from those proved for instance in [9,8] where the parameter
6 possibly depends on R, which makes the (§, R)-vanishing assumption hard to check.

Dependence of constants. Throughout this paper, the letter ¢ denotes a constant which may vary from line to line. The
parameters which the constants depend on are declared in the statements or in the proofs of the theorems. When we write
that c is an “absolute constant” we mean that it may depend on G and N.

3. Approximation by solutions of systems with constant coefficients

Notation 3.1. In order to simplify notation, henceforth we will systematically write the norms and spaces of vector valued
functions as

HW' (B) , l[ullyw1ps) » IFllp  instead of
HW ' (B RY) . llull w10 (g, » IFllip gava) -
and so on.

In this section we will prove a couple of theorems asserting that a solution to a system (1.1) with small datum F and
coefficients with small oscillation, can be suitably approximated by a solution to a system with constant coefficients and
zero datum. This approximation is one of the tools which will be used in the proof of Theorem 2.13.

Theorem 3.2. Under Assumption (H) (see Section 2.2), for any € > 0, Ry > O there is a small § = § (e, Ry, ) > 0 such that
for any R < Ry, if u is a weak solution to the system (1.1) in Bgg € $2 with

g _ (4
Gap (a“ﬂ )B4R

then there exists a weak solution v to the following homogeneous system with constant coefficients:

2 1 2
[Xul*dx < 1, — [F|” +
[Bar| JByp

2
)dx§ 8%, (3.1)

IBar| JB4g

X; ((agﬂ) x,-vf’(x))zo in Bag (32)
Bar
such that
1 1

lu—v|?dx < &2.
Bar

R? |Bugl
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Proof. Let us first prove the result for a fixed R (and § possibly depending on R), then we will show how to remove the
dependence on R.
P [o¢]
By contradiction, if the result does not hold, then there exist a constant &, > 0, and sequences {ai’} }’ satisfying (2.7),
k=1
{urdee ;. {Fx}po such that uy is a weak solution to the system

X; (alfuf 00) = Xf (0 (3.3)
in Bag with
Xuy 2 dx < 1 ! Bl + |al, — (al Vo< (34)
— Uy X <1, e X a,, — (a ) X< —, .
|B4R| Bag |B4| Bar g *p *p Bar k2
but
N (35)
—_ U — Uk X > & .
R? |Bag| Jp,y 0
for any weak solution vy of
X; ((aZ’%)B x,-v,'f(x)) —0 inBa. (36)
4R

From (3.4) and Poincaré’s inequality (2.2), we know that {uk - (u;<),34R}:°:1 is bounded in HW 12 (B4), then Rellich’s
lemma allows us to find a subsequence of {uy — (u)g,, }. still denoted by {uy — (w)g,, }. such that

1 1 2
—_— u, — (u — Ug| dx — 0, 3.7
R2 |B4R| /1;4R | k ( k)B4R O| ( )

Xug — Xup  weakly in 2, (3.8)
o0
as k — oo, for some ug € HW'? (By). Since {(ag’;) } is bounded in R, it allows a subsequence, still denoted by
Bar

k=1
ijk oo
ij
a ) , such that
{ ( P/ bag }k—l
() —aly >0, ask—os, (3.9)
Bar
for some constants ag 5-BY (3.4), it follows
azl;, — ﬁgﬂ inL? (Bsx), ask— oo.
Next, we show that ug is a weak solution of
X; (agﬂxjuﬂ (x)) —0 inBu. (3.10)
We start from
/ al (%) Xju Xig®dx = f F* X% dx (3.11)
Bar Bar

with g% € C5° (£2), and take the limit for k — 00. By (3.4),

/ f[*Xip%dx — 0.

By

Moreover,

/B al (X) Xju Xig®dx = fB [agg; (x) — agﬂ] Xt Xip® dx + / al Xiup Xig“dx = Ay + By
4R 4R

Bag

Now,

ijk —ij
|Akl < ¢ ||agg (X) — Gy Xty

‘ B

12 (Bar) 2 (B4Rr)



M. Zhu et al. /J. Math. Anal. Appl. 399 (2013) 442-458 449
because agl;; x) — &Zﬂ in? and IXjuf] is bounded in L?. Finally, since Xuy — Xuo weakly in L2,
By — / aZﬁXjngiQDadX;
Bag
hence
/ agﬂ)gugx,-w“dx =0 forany¢® € C5° (Ba) .
Bar

By density, this holds for any ¢* € HW(}’2 (B4r), SO Ug is a weak solution to (3.10).
Now, let vy, be the unique solution to the Dirichlet problem

Xi (( g’;) vak> =0 inBg (3 ]2)
e — o € HW(}*2 (Bar)

(see Remark 2.9). By (2.7) and using v, — ug as a test function in the definition of the solution to (3.12) we have

[,L/ Xy — Xug|? dx / (ai’l‘g) (vaf - Xjug) (Xivg — Xjug) dx
Bag Bar By

ijk B
_/ (a‘”’>3 Xiug (Xivp — Xiu§) dx,
Bar 4R

since uy is a weak solution to (3.10)

— il ijk B
= / (aaﬁ - (%;s)s )Xjuo (Xivg — Xug) dx
Bag 4R

~ij ijk B
(aaﬂ ( ""3>B4R> ’Xjuo‘ |Xiv;f —Xl-ug] dx

. - 1/2 1/2
(agﬁ ~ (%) ) (/ Xug 2 dx) : </ X v — Xu|? dx) ,
Bar Bag Bag
. %
<azﬂ — (agfs)&m)‘ (/B [Xuo|? dx) } (3.13)
4R

IA

<c(N) max

which implies

1/2
% (f |Xve — Xug|? dx) < ¢ max
Bag bje.p

Inequalities (3.9) and (3.13) imply

IXve — Xuoll 25,y = 0 ask — 0.
This convergence, the fact that vy — ug € HWOL2 (B4g) and (2.3) imply

lve — uoll2g,,y — 0 ask — 0. (3.14)
By (3.7) and (3.14) we can write

” Uk — (uk - (uk)B4R) ||L2(B4R) = ”uo - (uk - (uk)B4R) ||L2(B4R) + llve — uoll 2z, — O- (3.15)
On the other hand, vy + (ux)g,, is still a weak solution to (3.6); hence (3.5) implies
2 2
= |B4R|f (ux — ()p,,)|” dx > &3,

which contradicts (3.15). So we have proved the assertion, for some & p0551bly depending on ¢, R, w.
Let us now fix a particular Ry, and let R be any number < Ry. Assume u is a weak solutlon to system (1.1) in By € £2
satisfying (3.1). Just to simplify notations, assume that the center of By is the origin, and define

R (5(R),).
i =" (0 (g )):
- (o(2):)
i —fi(p R
fw“‘)—fa( (z?))
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Then, one can check that the function U solves the system
X; (a“; ﬂ(x)x,ﬂﬁ) = X1 inBu,.

To see this, for any ¢ € C3° (Bag), let ¢ (x) = Pog (D (%) x); then ¢ € C° (Bag,) and

/B . @ (0 X (x) X (1) dx = fB a” (D (:;) X) (X;u) (D (%) x) (Xip™) (D (I:)) X) d

4R0

R Q
=<E°> / 0 () (uP) () (Xi®) () dy

Ro ¢ i o
= (E) fo ) Xi9®) (v) dy
Bag

L O (2o

= | F*@Xi* (v dx.

Bag,)

@ s satisfy condition (2.7) with the same . Let § = & (e, Ro, i) be the number found in the first part of

Also, note that the a,
the proof, and assume that u, F a? satisfy (3.1) on By for this §; then 1, F aj; satisfy (3.1) on By, for the same §:

]
R 2
w0 (0(5))
|B4R0 | Bag, Ro

1 (Ro\? 5 1 X
= (B / 0w WPy = —— [ 10w o)Pdy < 1:
R Bag |Bar| Jayp

‘B4Ro‘
! B+ (@, - Neaxe 1 F|? + (af ) Nex<s
|B4R0| Bug, o  |Bagl Bag aﬂ P ) g -

1
dx

XU (x)]? dx

| Bagy | Bag,

(%)
ap Bagy

Hence, by the first part of the proof, there exists a weak solution v to the following homogeneous system with constant

coefficients:
xi((agﬂ) x,-’aﬁ(x)) =0 inBu,
Bag,
such that
1 1 ~ o~ 2

—— [ — 7% dx < &2
Rg |B4Ro| Barg

Then, the function

R_/ (R
v (X) = R70v (D (R) X)

satisfies

xi<(agﬂ)8 xjvﬁ(x)) =0 inBy
4R

and

11 11 R R R 2
AT lux) —v®)*dx = — —u(D( > ) — ( <—0> ) dx
R? |Bar| Jpyy R? |Bar| Jpyp | Ro Ro R

1 1 -~ Ro - Rg

= —Z— ulD x| —v — | x dx
RS 1Barl Jayp R R
1 1

=—-—— | [U-7Pdx<é
Ry ’B4R0’ Bary

We have therefore proved that the assertion holds with § depending on Ry but independent of R < Ry. O
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The following technical lemma is adapted from [11, Lemma 4.1, p.27].

Lemma 3.3. Let v/ (t) be a bounded nonnegative function defined on the interval [Ty, T;], where T; > Ty > 0. Suppose that for
any To <t <s < Ty, ¥ satisfies

A
() = 0Y(s) + P + B,

where ¥, A, B, B are nonnegative constants, and v < % Then

A
<cp|——F5+B|. Vo.To<p<R<Ty,
¥ (p) ﬂ[(R_p)ﬁ ] 0, To=<p 1

where cg only depends on f.

We are going to enforce the previous theorem with the following.

Theorem 3.4. For any ¢ > ORq > O, there is a small 5§ = § (e, Rg, ;t) > 0 such that for any R < Ry, if u is a weak solution of
system (1.1) in B4z € §2 and (3.1) holds, then there exists a weak solution v to (3.2) such that

— [Xu — Xv|>dx < &2.
|Bar| Jp,

Proof. By Theorem 3.2, we know that for any n > 0, there exist a small § = § (1, Ry, ) > 0 and a weak solution v of (3.2)
in B4g, such that

1 1

S lu —v2dx < n?, (3.16)
2

R? |Bar| Jpyp

provided (3.1) holds.
Let us note that u — v is a weak solution to the system

Xi (als 00X (uf = v) () =X (f; (x) — (ai{ﬁ ® — (als) )x,-vﬂ> (3.17)
Bar

in B4g. For any 2R < s < t < 3R, we choose a cutoff function ¢ (x) which satisfies

0<¢(x) <1 inBs, ¢ (X)) =1 inB;, ¢ (x) =0 inBsg\B;
and

c .
IXe (®)| < —— inBg.
t—s

Taking (u — v) ¢ as a test function, it follows by (3.17) that

,u/ X (u—v)?dx < / <p(x)agﬁ (x)xj(uﬂ_vﬂ)xi(ua_va)dx

Bs Bt

_ [ <f; ) — <agﬂ ) — (aZﬂ) )xjuﬁ>x,- (W — ") @) dx
Bt Bar
- / aZﬁ ®) W —v*) X; (v — vP) Xipdx.

Bt

By the properties of ¢, Young’s inequality and (2.7),
2
X v|) dx

lu — v|>dx

[Xu — Xv|*dx < c/ (|F| + max
B, i B

b, agﬂ (%) — (agﬁ (X))B4R

1
+— | |Xu—Xv|?dx+ >
4 Bt (t—S) Bt

aly (x) — (aZﬁ (x))B

2
dx

IA

c | |FPdx+sup|Xv]?- maxf
4R B3 LjaB Jpap 4R
1
|u—v|2dx+z |Xu — Xv|? dx.

2
(t—s) By Bt
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Setting

V(s) = f |Xu — Xv|? dx,
B

B= C/ |F|? dx + sup [Xv|? - max/
Bag B3g iLj.a.B Jpyp

A:/ lu — v|? dx, B =2,
Bar

2
dx,

aly ) = (aly 0)

4R

by Lemma 3.3 we deduce

Cc
/ |Xu—Xv|2dx§—2/ |u—v|2dx+c/ |F|2 dx
Bor R Bgr Bgr

(ag,g x) — (ag,g (X)>B4R>

By Theorem 2.10, since v — ug,, is still a solution to the system (3.2) in B4z we can write

2
dx. (3.18)

+csup [Xv|? - max/
B3 ij.a.B Jpp

sup |Xv|

B3g

IA

c.
7 |Br| /2 ||v — Uy ||L2(B4R)

IA

€ ini-12
B2 (1= vl + 0= e )
by (3.16), (2.2) and assumption (3.1) on u
< cn+cBel ™ IXull 2,y < ¢+ 1) < N, (3.19)

for some absolute constant Ny when 7 is, say, any number < 1.
By (3.18) and (3.19) we have

2

c cN i i
— Xu— Xv2dx < — |F|2dx+—0max/ ayy (X) — (agﬁ) dx
IBar| Jp,g Barl Jpy |Bag| i.c.B Jpyp Bag
c 1 2
AT |lu —vl|”dx,
R? |Bar| Jgy,

by (3.16) and (3.1)

¢ 2
< |F|* 4+ max
IBar| JB.z i,

c(8®+n%) <&,

aly 00— (aly @)

Byr

2
) dx + cn?

IA

for a suitable choice of 1, and after possibly diminishing §. This ends the proof. O
4. Estimates on the maximal function of |Xu|?

Definition 4.1. Let By € £2. For every f € L' (Bg), define the Hardy-Littlewood maximal function of f by

Mg, (f) (x) = su If Ol dy.

p e —
r=0 |Br () N Brl Jp,(orsg
Since (Bg, dx, dx) is a space of homogeneous type (see Remark 2.7), by [ 16, Theorem 2.1 p. 71] the following holds.

Lemma 4.2. Let f € L' (By), then

(i) Mg, (f) (x) is finite almost everywhere in B,
(ii) foreverya > 0,

l{x € Be: Mo (D0 >a)| <2 | IF @)l dy:
o B
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(iii) if f € LP (Bg) with 1 < p < oo, then Mg, (f) € L (Bg) and

||=MBR () ||Lp(BR) <6 Il »
where the constants c, only depend on p and G (but are independent of Bg).

The last statement about the dependence of the constants requires some explanation. In any space of homogeneous type
these constants depend on the two constants of the space, namely the one appearing in the “quasitriangle inequality” (2.4)
and the doubling constant appearing in (2.5). In our case the first constant is 1 (since dy is a distance) and the second is
independent of R, by Remark 2.7. Hence ¢, is independent of R.

Theorem 4.3. There exists an absolute constant Ny such that for any ¢ > 0, Ry > 0, thereis asmall § = § (&, Ry, ) > 0 such
that forany R < Rg/2,z € Bg (x) C Bj1r %) € 2 and 0 < r < 2R, if u is a weak solution of (1.1) in By1g (x) with

Br (2) N {x € Br (®) : Mp, 0 (IXul?) (x) < 1}
N {x € Br ®) : Mp, 0 (IFI*) (1) < 8%} # 0 (4.1)
and the coefficients aZ P (x) are (8, 4r)-vanishing in By (X), then

Br () N {x € By ®) : Mp, 0 (IXul*) () > Ni}| < €|B; (2)]. (4.2)

Proof. Fix ¢, Ry > 0; the number § will be chosen later. By (4.1), there exists a point X € B; (z), such that for any p > 0,

1
- [Xul?dx < 1, (4.3)
B, (x0) N Bi1r ®)| J5,x0)n1120
1
|F|? dx < §2. (4.4)

|Bp (x0) N By1r (?)| By (X0)NB11R (®)

Since z, xg € Bg (x) and r < 2R, we have the inclusions: By, (z) C Bs; (o) C B11r (x) and Bs; (xo) C Bg; (z). Then by (4.4)
with p = 5r we have that

1 B (z 1 6\
[F]2 dx < B @1 IF2dx < (f) 82, (4.5)
[Bar ()| Ji,, (2) [Bar ()| |Bsy (X0)| Js, (xg) 4
Similarly, by (4.3) we find
1 6\2
[Xu)? dx < (f) ) (4.6)
[Bar )| Jp,, (2) 4

By (4.5), (4.6) and the assumption on a’ 4 (x), we can apply Theorem 3.4 (with u replaced by (‘g‘)Q u and F replaced by (g)Q F)

on the ball By, (z) (recall thatr < Ry) and obtain that for any n > 0, there exists asmall § = § (, Rg, i) and a weak solution
v to

() 0) =0 im0

such that
1
|Byr (2)] Byr (2)
Also, recall the interior HW -*° regularity of v (3.19):

X (u—v)>dx < n?. (4.7)

XV 8y, 21y < No- (4.8)
Now, pick
5Q
N} = max { =, 4N§} . (4.9)
Cd

Then we claim that
{x € BR ®) : Mg, 0 (IXul?) (¥) > N7} NB, (2)
C{x€Br®) : Mp, ) (IX w—)*) (x) > N;} "B (2). (4.10)
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To see this, suppose

x1 € {x € BR®) NB: (2) : Mg, ) (IX (u—v)*) (%) < NG} (4.11)
When p < r, it follows that B, (x;) C By (z) C Bsg (X), then (4.11) and (4.8) imply
1 1
_ Xul?dx = ——— |Xu|? dx
B, (x1) N Biig ®)| S, (x)n1120 By x1)| Jo, 1)
2
(IX (w — v)* + [Xv]*) dx < 4N§ < N7. (4.12)

E [
|Bp (X1)| By (x1)

When p > r, since X1, Xo € B (z) we have d (x4, X)) < 2r < 2p; it follows that B, (x;) C Bs, (Xo) C Bs, (x1). Then by
Remark 2.7 and (4.3) we have

1 1

- XulPdx < ————— |Xu|? dx
B, (x1) N Bi1g ®)| J5, )81 0 ca [Bo %1)| Jbs, 60)B1 12
5Q
= |Xu|? dx
¢a |Bsp 1)| Jbs, xo)B11x0
5¢ )
< — |Xu|® dx
¢4 |Bsp (x0) N Biir (@) | B3 (x0)NB11R(®)
5Q
< — <N (4.13)
Cd
By (4.12) and (4.13), we have
x1 € {x € BR(®) : Mp, .0 (IXul’) < N7} N B (). (4.14)

Thus, inclusion (4.10) follows from the fact that (4.11) implies (4.14).
By (4.10), Lemma 4.2 (ii) and (4.7), we have

[{x € Bx ®) : Mz, (IXul?) () > N7} NB, (2)]

< |{x € Byr @) : My (IX (= v)P) (0 > Ng}|
c

== X (u—v)|? dx
Ng Jby2)

< cn’ By ()| = 2%9* |B; (2)|

= 82 |B; (Z)l .

For a fixed ¢, we have finally chosen 7 so that c2%»? = ¢? and picked the corresponding § depending on Ry, i and 7, that is
on Ry, i, €. This finishes our proof. O

Corollary 4.4. Foranye > 0, Ry > O, thereisasmall§ = & (¢, Ro, ) > OsuchthatforanyR < Ro/2,z € B (x),0 <1 < 2R
if uis a weak solution of (1.1) in By1g (x) € £2, the coefficients agﬂ (x) are (8, 4r)-vanishing in Bg (X) and

[{x € Be @) : My, 0 (1Xul?) () > NT} N B 2)] = £ 1B, )],
then

B, (2) NBr (X) C {x € BR (%) : Mg, o0 (IXul*) (0) > 1} U {x € Br }) : Mp, o0 (IFI*) () > 82}

5. L? estimate on | Xu|

In this section we exploit the local estimates on the maximal function of [Xu|? proved in the previous section in order to
prove the desired [P bound. The starting point is the following useful lemma about the estimate of the L” norm of a function
by means of its distribution function.

Lemma 5.1 (See [10, p. 62]). Let 6 > 0, m > 1 be constants, p € (1, 0o). Then there exists ¢ > 0 such that for any nonnegative
and measurable function f in £2,

fel’(2) ifandonlyif S= Zm"’ {xe 2:fx >om}| <oo

1>1
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and

1
=S < I g < R0+S).

Lemma 5.2 (Vitali). Let F be a family of dx-balls in R™ with bounded radii. There exists a finite or countable sequence {B;} C ¥
of mutually disjoint balls such that

BclJsB

BeF i

where 5B is the ball with the same center as B and radius five times big.
The proof is identical to that of the Euclidean case, with the Euclidean distance replaced by dx here.
Lemma 5.3. Let 0 < ¢ < 1, C and D be two measurable sets satisfying C C D C Bg (x) C 2, |C| < ¢ |Bg (x)| and the following
property:
Vx € BR(X), Vr <2R, |CNB, (xX)| > ¢ |B; (x)] = B, (x) NBg (x) C D. (5.1)

Then

5Q
IC| <e— DI,
Cd

where ¢ is the constants in (2.6).
Proof. Foranyx € C,C C Bg (X) C By (x); hence
|C N Bor (%) = [C| < &[Br X)| < &|Bar (%)].
On the other hand, by Lebesgue differentiation theorem, for a.e.x € C,

ICN B )
m-————=
r—0 |By (x|

)

hence for a.e. x € C there is an ry < 2R such that for all r € (ry, 2R) it holds
|cNB, (0| = ¢|B, x| and [CNB x| <e|B ()] (5.2)
By Lemma 5.2, there are x1, x;, . .. € C, such that Brxl (x1), Brx2 (x2), ... are mutually disjoint and satisfy

U Bsr,, 0 N B ® > C.
k

By (5.2) and (2.1), we know

€ N1 Bsyy, (x| < & [Bsy, (0| = e5°

Brxk (xk) .

Also,

IC|

(B, (0 N1 C

k

£5¢ Z
k

2y

Cd k

= [Ban, o 01|
k

IA

Brxk (Xk) ‘

IA

’

Brxk (Xk) N BR (i)

where the last inequality follows since By (x) is dx-regular (see Remark 2.7). Moreover since the B,xk (xx) are mutually disjoint
the last quantity equals

=1 (B, 00 018 )

5 5¢
=e— <e—|D|,
k Cd

since, by assumption (5.1), B, (xx) N Bg (x) C D. This completes the proof. O



456 M. Zhu et al. / J. Math. Anal. Appl. 399 (2013) 442-458

Theorem 5.4. For any ¢ > 0, Ry > 0 there is asmall § = & (¢, Ro, &) > 0 such that for any R < Ro/2, if u is a weak solution
of (1.1)in B11g (X) € 2, the coefficients agﬁ (x) are (8, 8R)-vanishing in Bg (X) and

|{x € Br ®) : Mg, o0 (IXul®) (x) > N7}| < & |Br (®)] (5.3)

(where Ny is like in Theorem 4.3), then for any positive integer m,

m
[{x € B (® : My (IXul?) (%) > NP} | < Zs’l Hx € By (®) 1 Mg, 0 (IFI?) (%) > 52N12(m—z)”
i=1
+ e [{x € BR ®) : Mp, 0 (IXul?) (0) > 1}
where &1 = £52/c;.

Proof. Fix e, Ry > 0and pick§ = § (&, Ry, 1) as in Corollary 4.4. We will prove this assertion by induction on m. Form = 1,
we want to apply Lemma 5.3 to

C:={x € Bx (X) : Mp, 0 (IXul®) (x) > N7},
D= {x € By (®) : Mp, ;0 (IFI*) (0) > 8°} U {x € B ®) : Mp,,p0 (IXul?) () > 1}.
Since N; > 1, C C D C Bg (%). Also, by assumption |C| < ¢ |Bg (X)|. Let x € By (X) such that
ICNBr (x)] = & B (X)].
Then by Corollary 4.4
B, (x) N Bg (X) C D;
hence by Lemma 5.3

5Q
ICl <e—ID|
Cd

which is our assertion for m = 1.

Now assume that the assertion is valid for some m. Let u be a weak solution to (1.1) in Byig (%) satisfying (5.3). Set
u; = u/N; and F; = F/Ny, then u4 is a weak solution of

Xi (agﬁ (x)><ju1) — XF,
in B1gr () € £2, and satisfies

HX € By (X) . MB“R(;) (|XU1|2) (X) > N12}| = |{X € Bg (}) : MB“R(;) (|Xu|2) (X) > Nf}‘
< |{x € BR ®) : Mp, 0 (IXul?) (x) > N} }| < & B ().

By the induction assumption on m, we have
[{x € Be @ : M (Xu) 00 = NI = [ € Be @+ Moy m) (K1) 0 > N7}

gl Hx € Br (®) 1 My, 0 (IF12) () > 521\112(”‘*”” +em |{x e By ®) : M, o0 (1Xus2) () > 1)

-

Il
-

[
M=

¢l Hx € By (®) : My, 0 (IF2) () > 82N2HD H + M |{x € By (®) : My (1Xu2) ) > N2}|. (5.4)
1

On the other hand, by the assertion valid form = 1,

[{x € Bx ®) : Mg,z (IXul?) (1) > N} < &1 |{x € B ®) : Mp, 0 (IFI?) () > 8%}
+e1|{x € BR®) : Mp, 0 (IXul?) (x) > 1}]. (5.5)
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Putting (5.5) into (5.4) we get

m
Hx € By (%) 1 My (1Xul?) (x) > Nf“”“)}’ <Y & Hx € B (%) : Mg, o0 (IF°) (%) > 521\112('"“—”}’
i=1

+ e | {x € Br (®) : My, pm (IXul?) (1) > 1} + &7 |{x € By ®) : My, 0 (IFI?) ) > 82}
m+1
— 281 HX € By (X) MB“R(X) (|F| ) (X) > 52 2(m+1 l)” + g']TH—l |{X € By (X) MBllR(j (|Xu| ) (X) > 1}|
which is the desired assertion for m + 1. This completes the proof. O

We can finally come to the following.

Proof of Theorem 2.13. Fix Ry, let ¢ > 0 to be chosen later, and pick § = § (¢, Ro, 1) as in Theorem 5.4. For A > 0, let
U, = % F, = % We claim that we can take A large enough (depending on ¢, u and F) so that

[{x € Bx ®) : Mz, o (IXurl?) %) > NT}| < & [Br ®)] (5.6)

and
D NP |{x € B ®) : My, (IFul?) (%) > SNF¥}| < 1. (5.7)

Actually, since F € IP (Byig (X) ; MV*9) with p > 2, we have Mg, . (IFil*) ¥) € L% (Byig (®)) by Lemma 4.2. Applying
Lemma 5.1 with f = Mg, ;) (|FA|2) ,0 =6, m= N%, £2 = Br(x) and p replaced by p/2, there is a positive constant ¢
depending only on §, p and Ny, such that

o
SN {x € Be®) : Moo (IF:12) (0 > SNZY| < || Moyyem (Fs2) [onraga, oy < € IF Mo ocey -
k=1

Also, by Lemma 4.2 we have

[{x € B ®) : Mo (IXusl?) %) > NP} = [{x € By ®) : Mo (IXul?) ) > A°NF}| < 5 N2 X125y 0

Hence we can take

IXutll 2 (5,1 050
v (e + ) h

for some constant ¢ depending on §, p, Ny; hence ¢ = (¢, R, p, G), and get (5.6) and (5.7) satisfied.
Next, by (5.6) we can apply Theorem 5.4 to u;, for this large A, writing

oo
D NP [{x € B (® : M0 (Xusl?) (1) > NP
k=1

o) k
= Zpr (Z 8"1 Hx € B (%) : Mg,z (|F,\|2) x) > 82N12(k—i)}’

k=1 i=1

+e} l{x € Bx ®) : Mgz (1Xu2l?) (%) > 1}|)

=Y (e iww

=1 k=i

[xeBe @ : Mayeen (IF ) 0 > 827 |

o0 .
+ > (NVer)' [{x € By ®) : My (1Xu3 1) (%) > 1}]

i=1

by (5.7)

=" (NPer) (1+ [Be ®)) < 1+ B ()]

i=1
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taking ¢ so that Nfes] = 1/2. We have finally chosen & small enough, depending on p and G, and a corresponding § =
8 (87 RO? M) =34 (pv G; RO» M)
Therefore we can apply Lemma 5.1to f = Mp, 0 (IXu3|*) (x) and m = N} getting

”‘MBHR(Y) (|XUA|2) ‘ IZP//ZZ(BR(R)) =c (1 + RQ)

with ¢ = ¢ (p, G), which by (5.8) implies

[ My 1e0 (1Xul®) ||1115/22(3R@)) < ¢ {IXull 28, g0) + IFllip ey g }

with ¢ = ¢ (R, Ry, p, G), and recalling that |f (x)| < M3, & (f) (%) for a.e. x, we get

”Xu”LP(BR(X)) =c {”XHHLZ(BHR(X)) + ”FHIP(B“R(D)} .
This completes the proof of Theorem 2.13. O
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