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Abstract

We consider a family of vector fields

Xi =

p
X

j=1

bij (x)∂xj

(i = 1, 2, ..., n; n < p) defined in some bounded domain Ω ⊂ R
p and as-

sume that the Xi’s satisfy Hörmander’s rank condition of some step r in
Ω, and bij ∈ Cr−1

`

Ω
´

. We extend to this nonsmooth context some results
which are well-known for smooth Hörmander’s vector fields, namely: some
basic properties of the distance induced by the vector fields, the doubling
condition, Chow’s connectivity theorem, and, under the stronger assump-
tion bij ∈ Cr−1,1 (Ω) , Poincaré’s inequality. By known results, these facts
also imply a Sobolev embedding. All these tools allow to draw some
consequences about second order differential operators modeled on these
nonsmooth Hörmander’s vector fields:

n
X

i,j=1

X
∗

i (aij (x)Xj)

where {aij} is a uniformly elliptic matrix of L∞ (Ω) functions.
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1 Introduction

1.1 The problem

Let us consider a family of real valued vector fields

Xi =

p∑

j=1

bij (x) ∂xj

(i = 0, 1, 2, ..., n; n < p) defined in some domain Ω ⊂ R
p. For the moment, we

do not specify the regularity of the bij ’s, but just assume that these coefficients
have all the derivatives involved in the formulae which we will write. Let us
define the commutator of two vector fields:

[X, Y ] = XY − Y X.

We also call commutator of length r an iterated commutator of the kind:

[
Xi1 ,

[
Xi2 , ...

[
Xir−1

, Xir

]
...

]]
.

One says that the system of vector fields X0, . . . , Xn satisfies Hörmander’s
condition of step r in Ω if the vector space spanned by the vector fields Xi’s
and their commutators of length up to r is the whole R

p at each point of Ω.
A famous theorem by Hörmander, 1967, [26], states that if the Xi’s are real
valued, have C∞ coefficients, and satisfy Hörmander’s condition of some step r
in Ω, then the linear second order differential operator:

L =

n∑

i=1

X2
i + X0. (1.1)
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is hypoelliptic in Ω. This means, by definition, that whenever the equation
Lu = f is satisfied in Ω in distributional sense, then for any open subset A ⊂ Ω,

f ∈ C∞ (A) =⇒ u ∈ C∞ (A) .

Another consequence of Hörmander’s condition, which is known since the
1930’s, is the connectivity property: any two points of Ω can be joined by a
sequence of arcs of integral lines of the vector fields (“Chow’s theorem”, 1939 [2];
see also Rashevski, 1938 [46]). This fact suggests that one can define a distance
induced by the vector fields, as the infimum of the lengths of the “admissible
lines” (tangent at every point to some linear combination of the Xi’s) connecting
two points.

Starting from Hörmander’s theorem, many other important properties have
been proved, in the last 40 years, both regarding systems of Hörmander’s vector
fields and the metric they induce, and regarding second order differential oper-
ators structured on Hörmander’s vector fields, like (1.1). In the first group of
results, we recall:

• the doubling property of the Lebesgue measure with respect to the metric
balls (Nagel-Stein-Wainger [43]);

• Poincaré’s inequality with respect to the vector fields (Jerison [28]).

In the second group of results, we recall:

• the “subelliptic estimates” of Hε,2 norm of u in terms of L2 norms of Lu
and u (Kohn [31]);

• the “W 2,p estimates”, involving second order derivatives with respect to
the vector fields Xi, in terms of Lp norms of Lu and u (Folland [12],
Rothschild-Stein [47]);

• estimates on the fundamental solution of L or ∂t −L (again [43], Sanchez-
Calle [50], Jerison-Sanchez-Calle [29], Fefferman-Sanchez-Calle [11]).

Now, it is fairly natural to ask whether part of the previous theory still holds
for a family of vector fields having only a partial regularity. Here are just a few
facts which suggest this question:

(i) to check Hörmander’s condition of step r one has to compute derivatives
of order up to r − 1 of the coefficients of vector fields;

(ii) the definition of distance induced by a system of vector fields makes
sense as soon as the vector fields are, say, locally Lipschitz continuous (in this
general case, however, the distance of two points could be infinite, and proving
connectivity, studying the volume of metric balls, proving the doubling condition
and so on are open problems);

(iii) apart from Hörmander’s theorem about hypoellipticity, which is mean-
ingful in the context of operators with C∞ coefficients, several important results
about second order differential operators built on Hörmander’s vector fields are
stated in a form which makes sense also for vector fields with a limited regularity
(e.g., Poincaré inequality, a priori estimates on XiXju in Lp or Hölder spaces,
etc.).
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1.2 Previous results

Several authors have studied the subject of nonsmooth Hörmander’s vector
fields, approaching the problem under different points of view. We give a brief
account of the main lines of research, without any attempt to quote neither all
the papers nor all the authors who have given contributions in these directions.

1. Nonsmooth diagonal vector fields

Xi = ai (x) ∂xi .

Here the typical assumptions are the following:

• the number of vector fields equals the dimension of the space;

• the i-th vector field involves only the derivative in the i-th direction;

• the coefficients ai can vanish, so the operator
∑

X2
i can be degenerate;

• the coefficients can be nonsmooth (typically, they are Lipschitz continuous,
and satisfy some other structural assumptions).

These operators have been first studied in several papers of the 1980’s by
Franchi and Lanconelli, see [16], [17], [18], [19], [20], and also the more recent
paper [13]. A recent work by Sawyer-Wheeden [52] deals extensively with these
operators. Clearly, the particular structure of these vector fields allows to use
ad-hoc techniques which cannot be employed in the general (non-diagonal) case.

2. “Axiomatic theories” of general Lipschitz vector fields, and the metrics
induced by them. This means that, for instance, one assumes axiomatically the
validity of a connectivity theorem, a doubling property for the metric balls, a
Poincaré’s inequality for the “gradient” defined by the system of vector fields,
and proves as a consequence other interesting properties of the metric or of
second order PDE’s structured on the vector fields. A good deal of papers have
been written in this spirit; we just quote some of the Authors and some of the
papers on this subject, which are a good starting point for further bibliographic
references: Capogna, Danielli, Franchi, Gallot, Garofalo, Gutierrez, Lanconelli,
Morbidelli, Nhieu, Serapioni, Serra Cassano, Wheeden; see [1], [9], [14], [15],
[22], [23], [24], [33]; see also the already quoted paper [52] and the one by
Hajlasz-Koskela [25].

3. Nonsmooth vector fields of step two. The two papers by Montanari-
Morbidelli [39], [40] consider vector fields with Lipschitz continuous coefficients,
satisfying Hörmander’s condition of step two, plus some other structural condi-
tion. The goal of these papers is to prove Poincaré’s and Sobolev’ type inequal-
ities for these vector fields. Rampazzo-Sussman [45] adopt a different point of
view; here the assumptions are very weak, considering Lipschitz vector fields
satisfying (at step 2) a “set valued Lie bracket condition” previously introduced
by the same Authors in the context of control theory; the Authors then establish
some basic properties of this weak “commutator”.

4. “Nonlinear vector fields”. In the context of Levi-type equations, several
Authors have considered vector fields with C1,α coefficients, having a particular
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structure, and satisfying Hörmander’s condition of step 2; the final goal is to
get a regularity theory for certain classes of nonlinear equations, which can be
written as sum of squares of “nonlinear vector fields”, i.e. vector fields whose
coefficients depend on the first order derivatives of the solution. Assuming that
the solution is C2,α, these vector fields become C1,α, and a good regularity
theory for the corresponding linear equation then implies, by a bootstrap ar-
gument, the smoothness of the solution. Some results of this kind also involve
higher steps. We refer to the papers by Citti [4], Citti-Montanari [6], [7], [8],
Montanari [35], [36], Citti-Lanconelli-Montanari [5], Montanari-Lanconelli [37],
Montanari-Lascialfari [38], and references therein.

We also quote some papers by Vodopyanov-Karmanova (see [30], [53] and
references therein), where the Authors study the geometry of nonsmooth vector
fields, and in particular establish a connectivity theorem assuming that the
highest order commutators have C1,α coefficients.

1.3 Aim of the present research and main results

Summarizing the discussion of the last paragraph, most of the previous results
about nonsmooth vector fields either hold only for the step 2 case, or for vec-
tor fields with a particular structure, or assume axiomatically some important
properties of the metric induced by the vector fields themselves.

Our aim is to develop a theory for any system of vector fields satisfy-
ing “Hörmander’s condition”, at any step, requiring that the coefficients of
the vector fields possess the minimal number of derivatives necessary to check
Hörmander’s condition.

More precisely, our assumptions consist in asking that, for some integer
r ≥ 2, the vector fields X1, ..., Xn possess Cr−1,1 (Ω) coefficients, and satisfy
Hörmander’s condition at step r. Under these assumptions, we prove some
basic properties of the distance induced by the Xi’s (see Propositions 2.3 and
5.8, Theorem 5.10), the doubling condition (Theorem 3.5 and Theorem 5.10),
Chow’s connectivity theorem (Theorem 5.5), and Poincaré’s inequality (Theo-
rem 7.2). Actually, most of our results (with the relevant exception of Poincaré’s
inequality) hold under the weaker assumption that Xi ∈ Cr−1 (Ω) . We will make
precise our assumptions later.

These results constitute a first set of tools regarding “nonsmooth Hörmander’s
vector fields” which is enough to draw some interesting consequences. For in-
stance, by known results, these facts also imply a Sobolev embedding (Theorem
8.1). All these tools then allow to prove some properties of solutions to second
order differential equations of the kind:

n∑

i,j=1

X∗
i (aij (x) Xju) = 0

where {aij} is a uniformly elliptic matrix of L∞ (Ω) functions, and Xi are non-
smooth Hörmander’s vector fields (see Theorem 8.2). Many other problems in
this direction remain open, which we hope to address in a future.
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Another feature of our work which we would like to point out here, is that we
take into account explicitly the possibility of weighted vector fields. To explain
this point, we recall that Hörmander’s theorem refers to an operator of the kind

n∑

i=1

X2
i + X0

and that, both in dealing with the metric induced by the Xi’s and in dealing
on a priori estimates for second order operators, the field X0 has “weight two”,
compared with X1, X2, ..., Xn which have “weight one”: in some sense, X0 plays
the role of a second order derivative, in a similar way as the time derivative enters
the heat equation. In §2, making precise our assumptions and notation, we will
explain how we take into account this fact.

1.4 Logical structure of the paper

The paper is sequenced into three parts. In the first part, consists in §§ 2-3, some
results about nonsmooth vector fields are deduced from analogous results which
are known to hold for smooth vector fields. Namely, in §2, after introducing
notation and making precise our assumptions, we prove a first basic inequality
relating the subelliptic metric d induced by nonsmooth vector fields and the
Euclidean one. Then, in §3 we introduce, in a standard way, a family of smooth
vector fields which approximate the nonsmooth ones in the neighborhood of a
point (by Taylor’s expansion of their coefficients), and prove that the metric balls
of the distances induced by smooth and nonsmooth vector fields are comparable.
In view of the doubling condition which holds in the smooth case, this implies
the doubling condition also for the metric d. This approximation technique
for nonsmooth vector fields has been already used by several authors, see for
instance [5], [8].

In the second part, consisting in §§4-5, we study extensively exponential and
“quasiexponential” maps built with our vector fields. In contrast with the style
of the first part, here we do not use any approximation argument, but have to
work directly with nonsmooth vector fields. The key result in §4 is Theorem
4.2, which says that the quasiexponential maps built composing in a suitable
way the exponentials of our basic vector fields are approximated by the expo-
nentials of commutators. As a consequence of this result, in §5 we can prove
Theorem 5.1, which states that the set of points which are reachable moving
along integral curves of the vector fields from a fixed point, is diffeomorphic to
a neighborhood of the origin. The two theorems we have just quoted are per-
haps the technical core of the paper, and the possibility of proving them under
our mild smoothness assumptions relies on a careful study of regularity matters
related to exponential and quasiexponential maps. These two theorems have
several interesting consequences. The first is a version of Chow’s connectivity
theorem (Theorem 5.5). A second one is the proof of the local equivalence of
the “control distance” d1 attached to our system of vector fields (and defined
without reference to the commutators) with d, as in the smooth case (Theorem
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5.10). In the “axiomatic theories” of vector fields with Lipschitz continuous co-
efficients, d1 is the natural distance that can be defined, while d (which involves
commutators) is generally meaningless. Therefore, the equivalence of d and d1

is a crucial point, because it allows to link the abstract results of axiomatic
theories with our more concrete setting (this fact will be actually useful in §6).
A third consequence is the possibility of controlling the increment of a function
by means of its gradient with respect to the vector fields Xi (Theorem 5.11).

The third part of the paper consisting in §§6-8. Here we prove Poincaré’s
inequality and draw some consequences from the whole theory developed so
far. In this part we set X0 ≡ 0 (as is natural in the context of Poincaré-
type inequalities) and strengthen our assumptions on the Xi’s, asking them
to belong to Cr−1,1, instead of Cr−1 (recall that r is the maximum length of
commutators required to check Hörmander’s condition). Part 3 is in some sense
a mix of the techniques employed in Part 1 and Part 2: namely, we make use
of the approximation by smooth vector fields and apply some known results
which hold in the smooth case (as in Part 1) but also have to make explicit
computation with nonsmooth vector fields (as in Part 2). Our strategy to prove
Poincaré’s inequality is to exploit the general approach developed by Lanconelli-
Morbidelli in [33], as well as Jerison’s method of proving Poincaré’s inequality
first for the lifted vector fields and then in the general case. We will say more
about this in §§6-7; here we just want to stress that all the results proved in
this paper before Poincaré’s inequality are needed, in order to apply the results
in [33] and derive this result in our context.

Finally, in §8, we show some of the facts which immediately follow from
our results, thanks to the existing “axiomatic theories”: a Sobolev embedding,
p-Poincaré’s inequality, and Moser’s iteration for variational second order oper-
ators structured on nonsmooth vector fields

The paper ends with an Appendix where we collect some miscellaneous
known results about ordinary differential equations, which are used through-
out the paper, together with the justification of a Claim made in §3.

Acknowledgements. We wish to thank Ermanno Lanconelli and Giovanna
Citti for some useful conversation on the subject of this research.

While we were completing this paper, Annamaria Montanari and Daniele
Morbidelli told us that they were working on similar problems, and have proved
some results similar to ours in [41]. We thank these authors for sharing with
us this information, and Daniele Morbidelli for having made important remarks
on a preprint of this paper.

2 The subelliptic metric

Notation. Let X0, X1, ..., Xn be a system of real vector fields, defined in a
domain of R

p. Let us assign to each Xi a weight pi, saying that

p0 = 2 and pi = 1 for i = 1, 2, ...n.

The following standard notation, will be used throughout the paper. For
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any multiindex
I = (i1, i2, ..., ik)

we define the weight of I as

|I| =

k∑

j=1

pij .

Sometimes, we will also use the (usual) length of I,

ℓ (I) = k.

For any multiindex I = (i1, i2, ..., ik) we set:

XI = Xi1Xi2 ...Xik

and
X[I] =

[
Xi1 ,

[
Xi2 , ...

[
Xik−1

, Xik

]
...

]]
.

If I = (i1) , then
X[I] = Xi1 = XI .

As usual, X[I] can be seen either as a differential operator or as a vector
field. We will write

X[I]f

to denote the differential operator X[I] acting on a function f , and

(
X[I]

)
x

to denote the vector field X[I] evaluated at the point x.

Assumptions (A). We assume that for some integer r ≥ 2 and some
bounded domain (i.e., connected open subset) Ω ⊂ R

p the following hold:

(A1) The coefficients of the vector fields X1, X2, ..., Xn belong to Cr−1
(
Ω

)
,

while the coefficients of X0 belong to Cr−2
(
Ω

)
. Here and in the following,

Ck stands for the classical space of functions with continuous derivatives
up to order k.

(A2) The vectors
{(

X[I]

)
x

}
|I|≤r

span R
p at every point x ∈ Ω.

Assumptions (A) will be in force throughout this section and the following.
These assumptions are consistent in view of the following

Remark 2.1 Under the assumption (A1) above, for any 1 ≤ k ≤ r, the differ-
ential operators

{XI}|I|≤k

are well defined, and have Cr−k coefficients. The same is true for the vector
fields

{
X[I]

}
|I|≤k

.
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Dependence of the constants. We will often write that some constant
depends on the vector fields Xi’s and some fixed domain Ω′ ⋐ Ω. (Actually,
the dependence on the Xi’s will be usually left understood). Explicitly, this will
mean that the constant depends on:

(i) Ω′;
(ii) the norms Cr−1

(
Ω

)
of the coefficients of Xi (i = 1, 2, ..., n) and the norms

Cr−2
(
Ω

)
of the coefficients of X0;

(iii) the moduli of continuity on Ω of the highest order derivatives of the
coefficients of the Xi’s (i = 0, 1, 2, ..., n) .

(iv) a positive constant c0 such that the following bound holds:

inf
x∈Ω′

max
|I1|,|I2|,...,|Ip|≤r

∣∣∣det
((

X[I1]

)
x

,
(
X[I2]

)
x

, ...,
(
X[Ip]

)
x

)∣∣∣ ≥ c0

(where “det” denotes the determinant of the p × p matrix having the vectors(
X[Ii]

)
x

as rows).
Note that (iv) is a quantitative way of assuring the validity of Hörmander’s

condition, uniformly in Ω′.

The subelliptic metric introduced by Nagel-Stein-Wainger [43], in this situ-
ation is defined as follows:

Definition 2.2 For any δ > 0, let C (δ) be the class of absolutely continuous
mappings ϕ : [0, 1] −→ Ω which satisfy

ϕ′ (t) =
∑

|I|≤r

aI (t)
(
X[I]

)
ϕ(t)

a.e.

with aI : [0, 1] → R measurable functions,

|aI (t)| ≤ δ|I|.

Then define

d (x, y) = inf {δ > 0 : ∃ϕ ∈ C (δ) with ϕ (0) = x, ϕ (1) = y} .

The following property can be proved exactly like in the smooth case (see
for instance Proposition 1.1 in [43]). We present a proof for the sake of com-
pleteness.

Proposition 2.3 (Relation with the Euclidean distance) Assume (A1)-(A2).
Then the function d : Ω × Ω → R is a (finite) distance. Moreover, there exist
a positive constant c1 depending on Ω and the Xi’s and, for every Ω′ ⋐ Ω, a
positive constant c2 depending on Ω′ and the Xi’s, such that

c1 |x − y| ≤ d (x, y) ≤ c2 |x − y|1/r for any x, y ∈ Ω′. (2.1)

Hence, in particular, the distance d induces Euclidean topology.
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Proof. It is clear by definition that d is a distance. Namely, this follows from the
fact that the union of two consecutive admissible curves can be reparametrized
to give an admissible curve. To prove (2.1), let ϕ ∈ C (ρ), for some ρ, be any
curve joining x to y, contained in Ω, then:

ϕ′ (t) =
∑

|I|≤r

aI (t)
(
X[I]

)
ϕ(t)

ϕ (0) = x, ϕ (1) = y, |aI (t)| ≤ ρ|I|.

Hence

|y − x| =

∣∣∣∣
∫ 1

0

ϕ′ (t) dt

∣∣∣∣ ≤
∫ 1

0

∑

|I|≤r

∣∣∣aI (t)
(
X[I]

)
ϕ(t)

∣∣∣ dt ≤

≤ sup
|I|≤r,z∈Ω

∣∣(X[I]

)
z

∣∣ ·
∑

|I|≤r

ρ|I| ≤ cρ.

By the definition of d, taking the infimum over ρ we get the first inequality in
(2.1).

To prove the second inequality, fix x0 ∈ Ω′, and select a subset η of multi-
indices I, |I| ≤ r, such that

{
X[I]

}
I∈η

is a basis of R
p at x0, and therefore in

a small neighborhood U (x0) ⋐ Ω; by continuity of the vector fields
{
X[I]

}
I∈η

,

we can take U (x0) small enough so that the p × p matrix

{αIJ (x)}I,J∈η , with αIJ (x) =
(
X[I]

)
x
·
(
X[J]

)
x

be uniformly positive in U (x0):
∑

I,J∈η

αIJ (x) ξIξJ ≥ c0 |ξ|2 for any x ∈ U (x0) , ξ ∈ R
p. (2.2)

Now, for any x, y ∈ U (x0) , let γ be any C1 curve contained in U (x0) , such
that γ (0) = x, γ (1) = y, and such that length(γ) ≤ c |x − y| ; moreover, we take
γ of constant speed, hence

|γ′ (t)| = length (γ) . (2.3)

Since the vector fields
{
X[I]

}
I∈η

are a basis of R
p at any point of U (x0) , we

can write
γ′ (t) =

∑

I∈η

aI (t)
(
X[I]

)
γ(t)

for suitable functions aI , where, by (2.2)

|γ′ (t)|2 ≥ c0

∑

J∈η

|aJ (t)|2 .

Hence, by (2.3),

|aI (t)| ≤ c |γ′ (t)| ≤ c |x − y| ≤ c |x − y||I|/r
. (2.4)

Therefore γ ∈ C
(
c |x − y|1/r

)
and the second inequality in (2.1) follows, for

any x, y ∈ U (x0) . A compactness argument gives the general case.
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3 Approximating vector fields and the doubling

condition

A key tool in the study of the nonsmooth vector fields Xi is to approximate
them, locally, with smooth vector fields, as we shall explain in this section.

Let us start with the following general remark, which follows from the stan-
dard Taylor formula.

For any f ∈ Ck (Ω) and Ω′ ⋐ Ω, let us define the following moduli of
continuity:

ωα (δ) = sup {|Dαf (x) − Dαf (y)| : x, y ∈ Ω′, |x − y| ≤ δ} for any |α| = k;

ωk (δ) = max
|α|=k

ωα (δ) .

Then the following holds:

f (x) =
∑

|α|≤k

Dαf (x0)

α!
(x − x0)

α
+O

(
|x − x0|k ωk (|x − x0|)

)
for any x, x0 ∈ Ω′.

The error term O
(
|x − x0|k ωk (|x − x0|)

)
can be rewritten as o

(
|x − x0|k

)
,

where this symbol means that

o
(
|x − x0|k

)

|x − x0|k
→ 0 for x → x0,

uniformly for x0 ranging in Ω′. We stress that, although elementary, this remark
is crucial in allowing us to prove the doubling condition assuming the coefficients
of Xi just in Cr−1 (and not, for instance, in Cr−1,1, as we shall do later).

Now, fix a point x0 ∈ Ω; for any i = 0, 1, 2, ..., n, let us consider the vector
field

Xi =

p∑

j=1

bij (x) ∂xj ;

let pr
ij (x) be the Taylor polynomial of bij (x) of center x0 and order r− pi; note

that, under assumption (A1), and by the above remark,

bij (x) = pr
ij (x) + o

(
|x − x0|r−pi

)
(3.1)

with the above meaning of the symbol o (·).
Set

Sx0

i =

p∑

j=1

pr
ij (x) ∂xj .

We will often write Si in place of Sx0

i , leaving the dependence on the point x0

implicitly understood.
From (3.1) immediately follows:

11



Proposition 3.1 Assume (A1) (see §2). Then the Sx0

i ’s (i = 0, 1, 2, ..., n) are
smooth vector fields defined in the whole space, satisfying:

(SI)x0
= (XI)x0

and
(
S[I]

)
x0

=
(
X[I]

)
x0

for any I with |I| ≤ r.

Moreover,

X[I] − S[I] =

p∑

j=1

cj
I (x) ∂xj with cj

I (x) = o
(
|x − x0|r−|I|

)
. (3.2)

We also need to check that the Sx0

i ’s satisfy Hörmander’s condition in a
neighborhood of x0, with some uniform control on the diameter of this neigh-
borhood:

Lemma 3.2 For every domain Ω′ ⋐ Ω there exists a constant δ > 0 depend-
ing on Ω′ and the Xi’s, such that for any x0 ∈ Ω′ the smooth vector fields
Sx0

1 , Sx0

2 , ..., Sx0
n satisfy Hörmander’s condition in

Uδ (x0) = {x ∈ Ω : |x − x0| < δ} .

Proof. Let f (x, x0) = maxη

∣∣∣∣det
{(

Sx0

[I]

)

x

}

I∈η

∣∣∣∣ where the maximum is taken

over all the possible choices of family η of p multiindices I with |I| ≤ r. Writing
the explicit form of the Sx0

i ’s:

Sx0

i =

n∑

j=1




∑

|α|≤r−1

Dαbij (x0)

α!
(x − x0)

α


 ∂xj , where

Xi =

n∑

j=1

bij (x) ∂xj ,

we see that the function f is continuous in Ω×Ω. Also observe now that, since(
Sx0

[I]

)

x0

=
(
X[I]

)
x0

we have

f (x0, x0) = max
η

∣∣∣∣det
{(

X[I]

)
x0

}

I∈η

∣∣∣∣ ≥ c0 > 0 ∀x0 ∈ Ω′.

The uniform continuity of f (in a suitable domain that contains Ω′ × Ω′)
allows to find δ > 0 such that f (x, x0) >

1
2c0 is |x − x0| 6 δ. This proves that

in Uδ (x0) the Sx0

i satisfy Hörmander’s condition.
The family {Sx0

i }n
i=1 will be a key tool for us. Namely, throughout the

paper we will apply to the Sx0

i ’s four important results proved by Nagel-Stein-
Wainger [43] for smooth Hörmander’s vector fields, namely: the estimate on the
volume of metric balls; the doubling condition (both contained in [43, Theorem
1]); the equivalence between two different distances induced by the vector fields
([43, Theorem 4]), and a more technical result which we will recall later as

12



Theorem 7.5. Since, on the other hand, for every different point x0 ∈ Ω′ we are
considering a different system of smooth vector fields, we are obliged to check
that the constants appearing in Nagel-Stein-Wainger’s estimates depend on the
smooth vector fields in a way that allows to keep them under uniform control,
for x0 ranging in Ω′ ⋐ Ω. This is possible in view of the following:

Claim 3.3 Let S1, S2, ..., Sn be a system of smooth Hörmander’s vector fields
of step r in some neighbourhood Ω of a bounded domain Ω′ ⊂ R

p. Then all
the constants appearing in the estimates proved in [43] depend on the Si’s only
through the following quantities:

1. an upper bound on the Ck
(
Ω′

)
norms of the coefficients of the Si’s, for

some “large” k only depending on the numbers p, n, r;

2. a positive lower bound on

inf
x∈Ω′

max
|I1|,|I2|,...,|Ip|≤r

∣∣∣det
((

S[I1]

)
x

,
(
S[I2]

)
x

, ...,
(
S[Ip]

)
x

)∣∣∣ .

A justification of this Claim will be sketched in the Appendix. Here we
just recall that a similar claim (specifically referring to the doubling condition
proved in [43]) was first made by Jerison in [28].

Now, let us fix a domain Ω′ ⋐ Ω; for any x0 ∈ Ω′ we can see by the explicit
form of the Sx0

i that

1. the Ck
(
Ω′

)
norms of the coefficients of the Sx0

i ’s are bounded, for all k,

by a constant only depending on the Cr−pi
(
Ω′

)
norms of the coefficients

of the vector fields Xi, the numbers r, p and the diameter of Ω′.

Moreover, from the proof of Lemma 3.2 we read that:

2. there exists a constant c0 > 0 such that for any x0 ∈ Ω′, if Uδ (x0) is the
neighborhood appearing in Lemma 3.2, where the Sx0

i satisfy Hörmander’s
condition, then

inf
x∈Uδ(x0)

max
|Ij |≤r

∣∣∣det
((

Sx0

[I1]

)

x
,
(
Sx0

[I2]

)

x
, ...,

(
Sx0

[Ip]

)

x

)∣∣∣ ≥ c0.

The constant c0 depends on vector fields Xi’s only through the Cr−pi
(
Ω′

)

norms of the coefficients, the moduli of continuity on Ω′ of the highest
order derivatives of the coefficients, and the positive quantity

inf
x∈Ω′

max
|Ij |≤r

∣∣∣det
((

X[I1]

)
x

,
(
X[I2]

)
x

, ...,
(
X[Ip]

)
x

)∣∣∣ .

The above discussion allows us to assure that every time we will apply to
the system of approximating vector fields Sx0

i some results proved in [43] for
smooth Hörmander’s vector fields, the constants appearing in these estimates

13



will be bounded, uniformly for x0 ranging in Ω′, in terms of quantities related
to our original nonsmooth vector fields Xi.

In order to prove the doubling condition for the balls defined by the distance
induced by nonsmooth vector fields, the simplest way is to compare this distance
to the one induced by the smooth approximating vector fields Si. We will show
that these two distances are locally equivalent, in a suitable pointwise sense,
which will be enough to deduce the doubling condition:

Theorem 3.4 (Approximating balls) Assume (A1)-(A2). For any fixed x0 ∈
Ω′ ⋐ Ω, let Sx0

i be the smooth vector fields defined as above. Let us denote by dX

and dS the distances induced by the Xi’s and the Si’s, respectively, and by BX

and BS the corresponding metric balls. There exist positive constants c1, c2, r0

depending on Ω, Ω′ and the Xi’s, but not on x0, such that

BSx0 (x0, c1ρ) ⊂ BX (x0, ρ) ⊂ BSx0 (x0, c2ρ)

for any ρ < r0.

Proof. Let x ∈ BSx0 (x0, ρ) . This means there exists φ (t) such that
{

φ′ (t) =
∑

|I|≤r aI (t)
(
Sx0

[I]

)

φ(t)

φ (0) = x0, φ (1) = x

with |aI (t)| ≤ ρ|I|. Let γ (t) be a solution to the system
{

γ′ (t) =
∑

|I|≤r aI (t)
(
X[I]

)
γ(t)

γ (0) = x0,

and set x′ = γ (1) . (Note that in general we don’t have uniqueness, because
the X[I]’s are just continuous if |I| = r and the functions aI (·) can be merely
measurable; however, existence is granted by Carathéodory’s theorem, see the
Appendix).

By definition, x′ ∈ BX (x0, ρ) . We have

|γ (t) − φ (t)| =

∣∣∣∣
∫ t

0

(γ′ (s) − φ′ (s)) ds

∣∣∣∣ ≤

≤
∑

|I|≤r

∫ t

0

|aI (s)|
∣∣∣∣
(
X[I]

)
γ(s)

−
(
Sx0

[I]

)

φ(s)

∣∣∣∣ ds ≤

≤
∑

|I|≤r

∫ t

0

|aI (s)|
{∣∣∣

(
X[I]

)
γ(s)

−
(
X[I]

)
φ(s)

∣∣∣ +

∣∣∣∣
(
X[I]

)
φ(s)

−
(
Sx0

[I]

)

φ(s)

∣∣∣∣
}

ds

≡ A + B.

By (3.2) we have, for ρ ≤ r0, r0 small enough

B ≤ c
∑

|I|≤r

∫ t

0

ρ|I| |φ (s) − x0|r−|I|
ds.

14



Since, by (2.1), |φ (s) − x0| ≤ cdSx0 (φ (s) , x0) ≤ cρ,we obtain

B ≤
∑

|I|≤r

cρ|I|ρr−|I| = cρr.

Moreover,

A ≤
∑

|I|≤r

∫ t

0

ρ|I|
∣∣∣
(
X[I]

)
γ(s)

−
(
X[I]

)
φ(s)

∣∣∣ ds ≤

≤ c
∑

|I|<r

∫ t

0

ρ|I| |γ (s) − φ (s)| ds +
∑

|I|=r

ρr · 2 sup
z∈Ω

∣∣(X[I]

)
z

∣∣

≤ cρ

∫ t

0

|γ (s) − φ (s)| ds + cρr

where we used the fact that the X[I] ∈ C1
(
Ω

)
for |I| < r and X[I] ∈ C0

(
Ω

)
for

|I| = r. Therefore we have, for any t ∈ (0, 1)

|γ (t) − φ (t)| ≤ cρ

∫ t

0

|γ (s) − φ (s)| ds + cρr.

By Gronwall’s Lemma (see the Appendix) this implies

|γ (t) − φ (t)| ≤ cρr

for any t ∈ (0, 1) , and so
|x − x′| ≤ cρr

which, again by (2.1), implies

dX (x, x′) ≤ c |x − x′|1/r ≤ cρ.

Since we already know that x′ ∈ BX (x0, ρ), we infer x ∈ BX (x0, c1ρ) . In other
words,

BSx0 (x0, ρ) ⊂ BX (x0, c1ρ) .

We can now repeat the same argument exchanging the roles of dX , dSx0 , and
get

BX (x0, ρ) ⊂ BSx0 (x0, c2ρ) .

Actually, in this case, some arguments simplify, due to the smoothness of the
vector fields Sx0

i .
By the doubling condition which holds for the balls induced by smooth vector

fields, proved by Nagel-Stein-Wainger (see [43, Thm.1]), the above Theorem
immediately implies the following

Theorem 3.5 (Doubling condition) Assume (A1)-(A2). For any domain
Ω′ ⋐ Ω, there exist positive constants c, r0, depending on Ω, Ω′ and the Xi’s,
such that

|BX (x0, 2ρ)| ≤ c |BX (x0, ρ)|
for any x0 ∈ Ω′, ρ < r0.
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Nagel-Stein-Wainger in [43] deduce the doubling condition from a sharp
result about the volume of metric balls, which we recall here. Also this result
follows, in the case of nonsmooth vector fields, by the above theorem about
approximating balls. Even though, in our approach, the volume estimate of
nonsmooth balls is not necessary to prove the nonsmooth doubling condition, it
can be of independent interest.

Theorem 3.6 (Volume of metric balls) Let η be any family of p multiindices
I1, I2, ..., Ip with |Ij | ≤ r; let |η| =

∑p
j=1 |Ij |. Let λη (x) be the determinant of

the p × p matrix of rows
{(

X[Ij ]

)
x

}

Ij∈η
. For any Ω′ ⋐ Ω there exist positive

constants c1, c2, r0 depending on Ω, Ω′ and the Xi’s, such that

c1

∑

η

|λη (x)| ρ|η| ≤ |BX (x, ρ)| ≤ c2

∑

η

|λη (x)| ρ|η|

for any ρ < r0, x ∈ Ω′, where the sum is taken over any family η with the above
properties.

Proof. By Nagel-Stein-Wainger’s theorem (see [43, Thm.1]),

c1

∑

η

|λη (x)| ρ|η| ≤ |BS (x, ρ)| ≤ c2

∑

η

|λη (x)| ρ|η|

where BS is the ball induced by the smooth vector fields Sx
i . Note that

(
X[I]

)
x

=(
Sx

[I]

)

x
for |I| ≤ r, therefore the quantity λη (x) computed for the system Xi is

the same of that computed for the system Sx
i . Moreover, the constants c1, c2, r0

do not depend on the point x, but only on Ω, Ω′ and the Xi’s. Then the result
follows by Theorem 3.4.

4 Exponential and quasiexponential maps

In this section we slightly strengthen our assumptions as follows:
Assumptions (B). We keep assumptions (A) but, in the case r = 2, we

also require X0 to have Lipschitz continuous (instead of merely continuous)
coefficients.

Accordingly, the constants in our estimates will depend on the Xi through
the quantities stated in §2 (see “Dependence of the constants”) and the Lipschitz
norms of the coefficients of X0.

Let us recall the standard definition of exponential of a vector field. We set:

exp (tX) (x0) = ϕ (t)

where ϕ is the solution to the Cauchy problem
{

ϕ′ (τ) = Xϕ(τ)

ϕ (0) = x0
(4.1)
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The point exp (tX) (x0) is uniquely defined for t ∈ R small enough, as soon as X
has Lipschitz continuous coefficients, by the classical Cauchy’s theorem about
existence and uniqueness for solutions to Cauchy problems. For a fixed Ω′ ⋐ Ω,
a t-neighborhood of zero where exp (tX) (x0) is defined can be found uniformly
for x0 ranging in Ω′ (see the Appendix).

Equivalently, we can write

exp (tX) (x0) = φ (1)

where φ is the solution to the Cauchy problem

{
φ′ (τ) = tXφ(τ)

φ (0) = x0.

By definition of subelliptic distance, this implies in particular that

d (exp (tpiXi) (x0) , x0) ≤ ct (4.2)

(recall that pi is the weight of Xi, defined in §2).
Let us also define the following quasiexponential maps (for i1, i2, ... ∈ {0, 1, ..., n}):

C1 (t, Xi1) = exp (tpi1 Xi1) ;

C2 (t, Xi1Xi2) = exp (−tpi2Xi2) exp (−tpi1 Xi1) exp (tpi2 Xi2) exp (tpi1 Xi1) ;

...

Cl (t, Xi1Xi2 ...Xil
) =

= Cl−1 (t, Xi2 ...Xil
)
−1

exp (−tpi1 Xi1) Cl−1 (t, Xi2 ...Xil
) exp (tpi1 Xi1)

Remark 4.1 Note that, in this definition, the exponential is taken only on the
vector fields Xi (i = 1, 2, ..., n), which have at least C1 coefficients, and X0,
which has at least Lipschitz continuous coefficients, hence Cl is well defined, for
t small enough. Also, note that Cℓ(I) (t, XI) is the product of a fixed number
(depending on ℓ (I)) of factors of the kind exp (±tpiXi) with i = 0, 1, 2, ..., n
(and pi = 2, 1, 1, ..., 1, respectively). In particular, this implies that each map

x 7−→ Cℓ(I) (t, XI) (x)

is invertible, for t small enough.
Moreover, if

x = Cl (t, Xi1Xi2 ...Xil
) (x0) ,

this means that the points x0, x can be joined by a curve composed by a finite
number of integral curves of the Xi’s, and that d (x, x0) ≤ ct (see (4.2)). We are
going to show that every point x in a small neighborhood of x0 can be obtained
in this way: this will imply Chow’s connectivity theorem.

The key result about the maps Cl defined above is the following:
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Theorem 4.2 (Approximation of quasiexponential maps with commutators)
For any fixed x0 ∈ Ω, let η be a set of p multiindices I with |I| ≤ r such that{(

X[I]

)
x0

}

I∈η
is a basis of R

p. Then there exists a neighborhood U of x0 such

that for any x ∈ U and any I ∈ η

Cℓ(I) (t, XI) (x) = x + t|I|
(
X[I]

)
x

+ o
(
t|I|

)
as t → 0

Cℓ(I) (t, XI)
−1 (x) = x − t|I|

(
X[I]

)
x

+ o
(
t|I|

)
as t → 0

where the remainder o
(
t|I|

)
is a map x 7→ f (t) (x) such that

sup
x∈U

|f (t) (x)|
t|I|

→ 0 as t → 0.

The above theorem says that moving in a suitable way along a chain of
integral lines of the Xi’s can give, as a net result, a displacement approximately
in the direction of any commutator of the vector fields. Since the commutators
span, this will imply that we can reach any point in this way.

The proof of the above theorem is organized in several steps. First of all, we
have to get some sharp information about the degree of regularity of exponential
maps. We start with the following classical result:

Theorem 4.3 Let F (t, x) = exp (tX) (x) , i.e.
{

∂F
∂t = XF (t,x)

F (0, x) = x
(4.3)

where X is Ck in a neighborhood of x0. Then, the function (t, x) 7−→ F (t, x) is
Ck in a neighborhood of (0, x0) .

Proof. In [44, §21 chap.3 and §29 in chap.4], it is proved that the derivatives

∂αF

∂xα
(t, x)

are continuous in a neighborhood of (0, x0) , for |α| ≤ k. To complete the proof,
we have to check the continuity of mixed derivatives

∂α+βF

∂xα∂tβ
(t, x)

for |α| + |β| ≤ k, |β| ≥ 1. If α = 0, the required regularity is read from the
equation. The general case requires an inductive reasoning. To fix ideas, let us
consider the case k = 2. Then we have:

∂2F (t, x)

∂xi∂t
=

∂

∂xi
(X (F (t, x))) = JX (F (t, x)) · ∂F (t, x)

∂xi

where JX denotes the Jacobian matrix of the map x 7→ Xx. Since we already

know that ∂F (t,x)
∂xi

and JX are continuous, continuity of ∂2F (t,x)
∂xi∂t follows. The

general case can be treated analogously.
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Corollary 4.4 If X is Ck in a neighborhood of x0 and F is as in (4.3), then

∂m+αF

∂tm∂xα
∈ C (U (0, x0))

for some neighborhood U (0, x0) , if m ≥ 1 and m + |α| ≤ k + 1.

Proof. If m+ |α| ≤ k this is contained in the previous theorem, so let m+ |α| =
k + 1, m ≥ 1. Since F is Ck by the previous theorem, X is Ck by assumption,
and

∂F (t, x)

∂t
= XF (t,x),

then ∂F
∂t ∈ Ck (U (0, x0)) . Hence

∂m+αF

∂tm∂xα
=

∂m−1+α

∂tm−1∂xα

∂F

∂t
∈ C (U (0, x0)) .

Corollary 4.5 If X is Ck in a neighborhood of x0 and F is as in (4.3), then
F is k + 1 times differentiable at (0, x) , for any x in that neighborhood of x0.

Proof. By Theorem 4.3, we are left to prove that

∂m+αF

∂tm∂xα
is differentiable at (0, x) for m + |α| = k.

If m ≥ 1, this fact is contained in Corollary 4.4, hence we have to prove that

∂αF

∂xα
is differentiable at (0, x) for |α| = k.

Let us write

∂αF

∂xα
(t, x + h) − ∂αF

∂xα
(0, x) =

=

[
∂αF

∂xα
(t, x + h) − ∂αF

∂xα
(0, x + h)

]
+

[
∂αF

∂xα
(0, x + h) − ∂αF

∂xα
(0, x)

]

≡ A + B.

By Corollary 4.4, ∂
∂t

(
∂αF
∂xα

)
is continuous, hence for some τ ∈ (0, t) we have

A = t
∂α+1F

∂t∂xα
(τ, x + h) = t

[
∂α+1F

∂t∂xα
(0, x) + o (1)

]
for (t, h) → 0.

On the other hand, F (0, x) = x for every x, hence

B =
∂α

∂xα
(x + h − x) = 0
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so
∂αF

∂xα
(t, x + h) − ∂αF

∂xα
(0, x) = t

∂α+1F

∂t∂xα
(0, x) + o

(√
t2 + h2

)
,

and ∂αF
∂xα is differentiable at (0, x) .

In order to apply the previous results to quasiexponential maps, it is conve-
nient to express the following step in an abstract way:

Proposition 4.6 For some positive integer l, let us consider a family of func-
tions

F (t1, t2, ..., tl) (·)
defined in a neighborhood of x0, with values in R

p, depending on l scalar param-
eters t1, t2, ..., tl, ranging in a neighborhood of 0, in such a way that:

F (t1, t2, ..., tl) (x) = x

as soon as at least one of the tj is equal to 0, and

(t1, t2, ..., tl, x) 7→ F (t1, t2, ..., tl) (x)

is Cl−1 in a neighborhood of (0, 0, ..., 0, x) and differentiable l times at (0, 0, ..., 0, x) .
Then the following expansion holds:

F (t1, t2, ..., tl) (x) = x + t1t2...tl
∂lF

∂t1∂t2...∂tl
(0, 0, ..., 0) (x) + o (t1t2...tl)

as (t1, t2, ..., tl) → 0.

Proof. Since F (t1, t2, ..., tl) (x) = x if ti = 0 for some i, then

∂F

∂tj
(t1, t2, ..., tl) (x) = 0 if ti = 0 for some i 6= j.

Then we can write, since F is Cl−1,

F (t1, t2, ..., tl) (x) = x +

∫ t1

0

∂F

∂t1
(u1, t2, ..., tl) du1

= x +

∫ t1

0

[
∂F

∂t1
(u1, t2, ..., tl) −

∂F

∂t1
(u1, 0, t3, ..., tl)

]
du1

= x +

∫ t1

0

∫ t2

0

∂2F

∂t1∂t2
(u1, u2, t3..., tl) du2du1

= ...

= x +

∫ t1

0

...

∫ tl−1

0

∂l−1F

∂t1∂t2...∂tl−1
(u1, u2, ..., ul−1, tl) dul−1...du1.

(4.4)
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By assumption, ∂l−1F
∂t1∂t2...∂tl−1

is differentiable at (0, 0, ..., 0) (x) , and

∂

∂tj

∂l−1F

∂t1∂t2...∂tl−1
(0, 0, ..., 0) (x) = 0 for any j 6= l,

hence the last expression in (4.4) equals

x+

∫ t1

0

...

∫ tl−1

0

[
tl

∂l−1F

∂t1∂t2...∂tl−1
(0, 0, ..., 0) + o

(√
u2

1 + ...u2
l−1 + t2l

)]
dul−1...du1.

However, performing if necessary the integration with respect to the variables
ui in a different order, we can always assume that tl ≥ max (t1, t2, ..., tl−1) , so

that o
(√

u2
1 + ...u2

l−1 + t2l

)
= o (tl) and we get

F (t1, t2, ..., tl) (x)

= x +

∫ t1

0

...

∫ tl−1

0

[
tl

∂l−1F

∂t1∂t2...∂tl−1
(0, 0, ..., 0) + o (tl)

]
dul−1...du1

= x + t1t2...tl
∂lF

∂t1∂t2...∂tl
(0, 0, ..., 0) (x) + o (t1t2...tl) .

We now come back to our vector fields. For fixed ℓ ≤ r and Xi1 , Xi2 , ..., Xiℓ
,

with {i1, i2, ..., iℓ} ⊂ {0, 1, 2, ..., n} , let us define recursively the following maps:

C1 (t1) (x) = exp (t1Xi1) (x)

C2 (t1, t2) (x) = exp (−t2Xi2) exp (−t1Xi1) exp (t2Xi2) exp (t1Xi1) (x)

...

Cl (t1, . . . tl) (x) = Cl−1 (t2, . . . , tl)
−1 exp (−t1X1) Cℓ−1 (t2, . . . , tl) exp (t1X1) (x)

Note that Cℓ (tpi1 , tpi2 , . . . , tpil ) coincides with the map Cl (t, Xi1Xi2 ...Xil
)

previously defined. The previous Proposition implies the following:

Theorem 4.7 For any multiindex I with |I| ≤ r, l = ℓ (I) we have

Cl (t1, . . . tl) (x) = x + t1t2 . . . tl
∂lCl (0, 0, ..., 0)

∂t1∂t2 · · ·∂tl
(x) + o (t1t2 . . . tl) (4.5)

as (t1, t2, . . . , tl) → 0. In particular:

Cl (t, Xi1Xi2 ...Xil
) (x) = x + t|I|

∂lCl (0, 0, ..., 0)

∂t1∂t2 · · · ∂tl
(x) + o

(
t|I|

)
(4.6)

as t → 0, where the symbol o (·) has the meaning explained in Theorem 4.2.

Proof. We start noting that Cl (t1, . . . tl) reduces to the identity if at least one
component of (t1, . . . tl) vanishes. This can be proved inductively, as follows.
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For l = 1, this is just the identity exp (0) (x) = x. Assume this holds up to l−1.
Then, if t1 = 0 we have

Cl (0, t2, . . . tl) (x) = Cl−1 (t2, . . . , tl)
−1 exp (0) Cl−1 (t2, . . . , tl) exp (0) (x)

= Cl−1 (t2, . . . , tl)
−1 Cl−1 (t2, . . . , tl) (x) = x

On the other side, if (t2, . . . , tl) has some component that vanishes then

Cl (t1, . . . tl) (x) =

= Cl−1 (t2, . . . , tl)
−1

exp (−t1X1) Cl−1 (t2, . . . , tl) exp (t1X1) (x)

= Id exp (−t1X1) Id exp (t1X1) (x) = exp (−t1X1) exp (t1X1) (x) = x.

Now, assume first that the multiindex I does not contain any 0; then ℓ (I) =
|I| ≤ r; each vector field Xij is Cr−1, so that the function Cl (t1, . . . tl) (x) is
Cr−1 in a neighborhood of (x, 0) and, by Corollary 4.5 r times differentiable at
t = 0. Hence we can apply Proposition 4.6 and conclude (4.5).

If, instead, the multiindex I contains some 0, since X0 is just Cr−2, by
Corollary 4.5 we will conclude that the function Cl (t1, . . . tl) (x) is only r − 1
times differentiable at t = 0. On the other hand, in this case ℓ (I) ≤ |I| − 1 ≤
r − 1 (because X0 has weight 2), so the function Cl (t1, . . . tl) (x) is still l times
differentiable at t = 0, and Proposition 4.6 still implies (4.5).

Finally, (4.5) implies (4.6) letting ti = tpi for i = 1, 2, ..., l.
The identity (4.6) in Theorem 4.7 will imply Theorem 4.2 as soon as we will

prove the following:

Theorem 4.8 For any multiindex I with |I| ≤ r, l = ℓ (I) we have

∂lCl (0, 0, ..., 0)

∂t1 · · · ∂tl
(x) =

(
X[I]

)
x

. (4.7)

In order to prove Theorem 4.8, still another abstract Lemma is useful:

Lemma 4.9 Let O be an open subset of R
p and A, B : (−ε, ε)×O → R

p be two
C1 funtions (for some ε > 0); assume that for every x ∈ O we have A (0, x) = x
and B (0, x) = x. Since ∂A

∂x (0, x) = Id it follows that for every t sufficiently
small A (t, ·) is invertible. We denote with A−1 (t, x) the inverse of this function.
Similarly let B−1 (t, x) the inverse of B (t, ·) . Let

F (t, s, x) = A−1
(
t, B−1 (s, A (t, B (s, x)))

)
.

Assume that for every x ∈ O, A and B are two times differentiable at (0, x).
Then

∂2F

∂t∂s
(0, 0, x) =

∂2A

∂x∂t
(0, x)

∂B

∂s
(0, x) − ∂2B

∂s∂x
(0, x)

∂A

∂t
(0, x) .
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We have used a compact matrix notation, where for instance ∂2A
∂x∂t (0, x)

stands for the Jacobian of the map

x 7→ ∂A

∂t
(0, x) .

Proof. Since ∂A
∂x (0, x) = Id we have ∂2A

∂xi∂xj
(0, x) = 0 and the same holds with

A replaced by A−1, B and B−1. Then

∂F

∂t
(0, s, x) =

∂A−1

∂t

(
0, B−1 (s, A (0, B (s, x)))

)

+
∂A−1

∂x

(
0, B−1 (s, A (t, B (s, x)))

) ∂B−1

∂x
(s, A (0, B (s, x)))

∂A

∂t
(0, B (s, x)) .

Since B−1 (s, A (0, B (s, x))) = B−1 (s, B (s, x)) = x and ∂A−1

∂x (0, x) = Id the
above equation reduces to

∂F

∂t
(0, s, x) =

∂A−1

∂t
(0, x) +

∂B−1

∂x
(s, B (s, x))

∂A

∂t
(0, B (s, x)) .

Let us compute

∂F (0, 0, x)

∂t∂s
=

[
∂B−1

∂s∂x
(0, B (0, x)) +

∂2B−1

∂x2
(0, B (0, x))

∂B

∂s
(0, x)

]
∂A

∂t
(0, B (0, x))

+
∂B−1

∂x
(0, B (0, x))

∂2A

∂x∂t
(0, B (0, x))

∂B

∂s
(0, x)

Since ∂B−1

∂x (0, B (0, x)) = Id and ∂2B−1

∂x2 (0, B (0, x)) = 0 we have

∂F (0, 0, x)

∂t∂s
=

∂2B−1

∂s∂x
(0, x)

∂A

∂t
(0, x) +

∂2A

∂x∂t
(0, x)

∂B

∂s
(0, x) .

Finally since B−1 (s, B (s, x)) = x a simple computation shows that ∂B−1

∂s (0, x) =

−∂B
∂s (0, x) and therefore

∂F (0, 0, x)

∂t∂s
= − ∂2B

∂s∂x
(0, x)

∂A

∂t
(0, x) +

∂2A

∂x∂t
(0, x)

∂B

∂s
(0, x) .

Proof of Theorem 4.8. We prove the theorem by induction on l. For l = 1
the Theorem is trivial:

∂C1 (0) (x)

∂t
=

∂

∂t
exp (tXi)/t=0 (x) = (Xi)x .

Assume the theorem holds for l − 1 and let us prove it for l ≥ 2. Let

A (t2, . . . tl, x) = Cℓ−1 (t2, . . . tl) (x)
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and
B (t1, x) = exp (t1Xi1) (x) .

In order to apply Lemma 4.9, we have to check that A, B are C1 and twice
differentiable at t = 0. Let us distinguish the following cases:

a) The multiindex I does not contain any 0. Then all the Xij are Cr−1, that
is at least C1, hence A, B are C1 and, by Corollary 4.5, twice differentiable at
t = 0.

b) The multiindex I contains at least a 0. Then, since we are commuting
at least two vector fields, at least one of which is X0, we have that r ≥ 3.
Therefore all the Xi’s are at least C1, hence A, B are C1 and, by Corollary 4.5,
twice differentiable at t = 0.

We can then apply Lemma 4.9 to A, B, with respect to the variables t1, t2
(regarding t3, .., tl as parameters), obtaining:

∂2Cl

∂t1∂t2
(0, 0, t3, . . . , tl) (x)

= − ∂2B

∂t1∂x
(0, x)

∂A

∂t2
(0, x) +

∂2A

∂x∂t2
(0, x)

∂B

∂t1
(0, x)

= −∂Xi1

∂x
(x)

∂Cl−1 (0, t3, . . . , tℓ)

∂t2
(x) +

∂

∂x

∂Cl−1 (0, t3, . . . , tℓ)

∂t2
(x)Xi1 (x)

We can now compute the remaining ℓ − 2 derivatives in 0 (observe that by
Theorem 4.7 we already know that we can compute r derivatives of Cl−1 at
t = 0). This yields

∂lCℓ

∂t1 · · · ∂tl
(0, . . . , 0) =

= − ∂Xi1

∂x
(x)

∂Cl−1 (0, . . . , 0)

∂t2 · · · ∂tl
(x) +

∂

∂x

∂Cl−1 (0, . . . , 0)

∂t2 · · · ∂tl
(x) Xi1 (x) .

Since by inductive assumption we have ∂Cl−1(0,...,0)
∂t2···∂tl

(x) =
[
Xi2 , . . .

[
Xiℓ−1

, Xiℓ

]]
x

the Theorem follows.
As already noted, from Theorem 4.7 and Theorem 4.8, Theorem 4.2 follows.

5 Connectivity and equivalent distances

In this section we have to further strengthen our assumption on X0:
Assumptions (C). We keep assumptions (A) but, in the case r = 2, we

also require X0 to have C1 coefficients (instead of merely continuous, as in §2
or Lipschitz continuous, as in §4) .

Let us define the maps:

EI (t) =

{
Cℓ(I)

(
t1/|I|, XI

)
if t ≥ 0

Cℓ(I)

(
|t|1/|I| , XI

)−1

if t < 0
.
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for any I ∈ η (where η is like in Theorem 4.2). By Theorem 4.2, the following
expansion holds:

EI (t) (x) = x + t
(
X[I]

)
x

+ o (t) as t → 0. (5.1)

We are now in position to state the main result of this section:

Theorem 5.1 Let Ω′ ⋐ Ω, x0 ∈ Ω′ and let
{
X[Ij ]

}
Ij∈η

be any family of p

commutators (with |Ij | ≤ r) which span R
p at x0, satisfying

∣∣∣∣det
{(

X[Ij ]

)
x0

}

Ij∈η

∣∣∣∣ ≥ (1 − ε)max
ζ

∣∣∣∣det
{(

X[Ij ]

)
x0

}

Ij∈ζ

∣∣∣∣ (5.2)

for some ε ∈ (0, 1) . Then there exist constants δ1, δ2 > 0, depending on Ω′, ε
and the Xi’s, such that the map

(h1, h2, ..., hp) 7→ EI1 (h1) EI2 (h2) ...EIp (hp) (x0)

is a C1 diffeomorphism of a neighborhood of the origin {h : |h| < δ1} onto a
neighborhood U (x0) of x0 containing {x : |x − x0| < δ2} . It is also a C1 map in
the joint variables h1, h2, ..., hp, x for x ∈ Ω′ and |h| < δ1.

To stress the dependence of this diffeomorphism on the system of vector
fields {Xi}, the choice of the basis η, and the point x, we will write

EX
η (x, h) = EI1 (h1)EI2 (h2) · · ·EIp (hp) (x) .

Proof. First of all, let us check that the map

(x, h) 7−→ EI1 (h1)EI2 (h2) · · ·EIp (hp) (x) (5.3)

is of class C1 for x ∈ Ω′ and |h| ≤ δ, for some δ > 0. This will follow, by
composition, if we prove that for any multiindex I, the map

(t, x) 7→ EI (t) (x)

is C1.
Assume first that the multiindex I does not contain any 0, so that each

vector field which enters the definition of EI (t) (x) is of class Cr−1. Then, by
Corollary 4.4, and Corollary 4.5 we know that each function

(t, x) 7−→ CI (t) (x)

is Cr−1 in the joint variables, for t in a neighborhood of the origin and x in a fixed
neighborhood of some x0, and differentiable r times at (0, x) . By composition,
the map (t, x) 7→ EI (t) (x) is C1 in x, and has continuous t derivative for t 6= 0.
Moreover, the expansion (5.1) shows that there exists

∂EI (0) (x)

∂t
=

(
X[I]

)
x

. (5.4)
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It remains to prove that

∂EI (t) (x)

∂t
→

(
X[I]

)
x

for t → 0. (5.5)

Since CI (t) (x) is differentiable r times at t = 0 (and r ≥ |I|), the expansion of
CI (t) (x) given by Theorem 4.2 also says that

∂CI (t) (x)

∂t
= |I| t|I|−1

(
X[I]

)
x

+ o
(
t|I|−1

)

Then we can compute:

lim
t→0

∂EI (t) (x)

∂t
= lim

t→0

1

|I| t1−1/|I|

∂CI

(
t1/|I|

)
(x)

∂t
=

= lim
t→0

1

|I| t|I|−1

∂CI (t) (x)

∂t
= lim

t→0

1

|I| t|I|−1

(
|I| t|I|−1

(
X[I]

)
x

+ o
(
t|I|−1

))
=

(
X[I]

)
x

and this allows to conclude that the map (5.3) is C1.
Let us now consider the case when the multiindex I also contains some 0, so

that the vector field X0, of class Cr−2, enters the definition of EI (t) (x) . This
case requires a more careful inspection. First of all, by our Assumptions (C) all
the Xi’s (i = 0, 1, ..., n) are at least C1, and the function EI (t) (x) is C1 in the
joint variables for t 6= 0. Again, (5.4) is in force, and we are reduced to proving
(5.5). Assume |I| = r (the case |I| < r is easier). Since X0 has weight two, we
have l = ℓ (I) < r.

Let us consider the function Cl (t1, . . . , tl) (x) introduced in the previous sec-
tion; we have:

g (t) ≡ EI (t) (x) = Cl

(
tpk1

/r, . . . , tpkl
/r

)
(x) (5.6)

where each pki is the weight of a vector field (pki = 1 or 2), and pk1
+ pk2

+ ...+
pkl

= r. Our goal consists in proving that g′ (t) → g′ (0) as t → 0.

Claim 5.2 The function

(t1, . . . , tl, x) 7→ Cl (t1, . . . tl) (x)

is Cl−1, and is l times differentiable at any point (t1, . . . , tl, x) such that tj = 0
if pkj = 2.

Proof of the Claim. We know that

Cl (t1, . . . tl) (x) =

N∏

j=1

exp
(
±tkj Xkj

)
(x) .

If pkj = 1, then Xkj ∈ Cr−1 ⊂ Cl (since l < r), and the function

(t, x) 7→ exp
(
±tXkj

)
(x)
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is l times differentiable at any point (t, x) ;
if pkj = 2, then Xkj ∈ Cr−2 ⊂ Cl−1 (since l < r), and the function

(t, x) 7→ exp
(
±tXkj

)
(x)

is l times differentiable at any point (0, x) , by Corollary 14. By composition,
the Claim follows.

Claim 5.3 The function

th 7→ ∂lCl

∂t1...∂tl
(0, ..., th, ..., 0) (x)

is continuous if pih
= 1.

Proof of the Claim. By the previous claim, this derivative actually exists; we
have to prove its continuity. Indeed, one can easily check by induction that the
derivative

∂lCl

∂t1...∂tl
(0, ..., th, ..., 0) (x)

is a polynomial in variables of the form

∂|α|

∂xα
(exp (±tiXi))




∏

j

exp
(
±tkj Xkj

)
(x)



 (5.7)

with |α| 6 ℓ and

∂|α|+1

∂ti∂xα
(exp (±tiXi))




∏

j

exp
(
±tkj Xkj

)
(x)


 = ± ∂|α|

∂xα
Xi




∏

j

exp
(
±tkj Xkj

)
(x)




(5.8)
with |α| 6 ℓ − 1. These derivatives should be evaluated for ti = 0 when i 6= h.

Let us consider the derivatives of the form (5.7) and assume first i 6= h so
that ti = 0. In this case the map exp (±tiXi) reduces to the identity and the
derivative is obsiously continuous. When i = h the continuity follows from the
fact that Xh ∈ Cℓ.

The continuity of the derivatives of the form (5.8) follows from the fact that
in this case |α| 6 ℓ − 1 and Xi ∈ Cℓ−1.

By Proposition 4.6, we know that

Cl (t1, t2, ..., tl) (x) = x + t1t2...tl
∂lCl

∂t1∂t2...∂tl
(0, 0, ..., 0) (x) + o (t1t2...tl) .

Assume for a moment that we can prove an analogous expansion for first order
derivatives of Cl, namely

∂Cl (t1, . . . tl) (x)

∂t1
= t2t3...tl

∂lCl

∂t1∂t2...∂tl−1∂tl
(0, 0, ..., 0) (x)+ o (t2t3...tl) . (5.9)
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Then we could easily conclude the proof as follows.
Let us compute

g′ (t) =

l∑

j=1

pkj

r
tpkj

/r−1 ∂Cl

(
tpk1

/r, . . . , tpkl
/r

)
(x)

∂tj
=

applying (5.9) to every j-derivative of Cl

=
l∑

j=1

pkj

r
tpkj

/r−1

[
∂Cl (0, 0, ..., 0) (x)

∂tj
t

P

i6=j pkj
/r + o

(
t

P

i6=j pkj
/r

)]

=

l∑

j=1

pkj

r
tpkj

/r−1

[
∂Cl (0, 0, ..., 0) (x)

∂tj
t1−pkj

/r + o
(
t1−pkj

/r
)]

=
∂Cl (0, 0, ..., 0) (x)

∂tj

l∑

j=1

pkj

r
[1 + o (1)] =

∂Cl (0, 0, ..., 0) (x)

∂tj
+ o (1)

→ ∂Cl (0, 0, ..., 0) (x)

∂tj
= g′ (0) as t → 0.

So we are left to prove (5.9). What we can actually prove is a slightly less
general assertion, which is enough to perform the above computation:

Claim 5.4 The expansion (5.9) holds if

ti = tpki
/r for i = 1, 2, ..., l, and t → 0.

Proof of the Claim. As we have seen in the proof of Proposition 4.6, since Cl

is Cl−1 we can write

Cl (t1, . . . tl) (x) = x+

∫ t1

0

...

∫ tl−1

0

∂l−1Cl

∂t1∂t2...∂tl−1
(u1, u2, ..., ul−1, tl) (x) dul−1...du1

and hence, differentiating with respect to t1,

∂Cl (t1, . . . tl) (x)

∂t1
=

∫ t2

0

...

∫ tl−1

0

∂l−1Cl

∂t1∂t2...∂tl−1
(t1, u2, ..., ul−1, tl) (x) dul−1...du1

(5.10)

=

∫ t2

0

...

∫ tl−1

0

[
tl

∂lCl

∂t1∂t2...∂tl−1∂tl
(0, 0, ..., 0) (x)+

+o
(√

t21 + u2
2 + ... + u2

l−1 + t2l

)]
dul−1...du1

= t2t3...tl
∂lCl

∂t1∂t2...∂tl−1∂tl
(0, 0, ..., 0) (x) + t2t3...tl−1 · o (|t|) .

Now, if
max

j=1,...,l
|tj | = |ti| with i 6= 1, (5.11)
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without loss of generality we can suppose that this maximum is assumed for
i = l. In this case we can write

∂Cl (t1, . . . tl) (x)

∂t1
= t2t3...tl

∂lCl

∂t1∂t2...∂tl−1∂tl
(0, 0, ..., 0) (x) + o (t2t3...tl) .

Note that, for ti = tpki
/r and t → 0, condition (5.11) just means pk1

= 2.
Assume, instead, that

max
j=1,...,l

|tj | = |t1| , that is pk1
= 1.

In this case, we start again with (5.10) but now we exploit the fact that
∂l−1Cl

∂t1∂t2...∂tl−1
is differentiable at (t1, 0, ..., 0) (x) (see the previous Claim). Hence

∂Cl (t1, . . . tl) (x)

∂t1
=

∫ t2

0

...

∫ tl−1

0

∂l−1Cl

∂t1∂t2...∂tl−1
(t1, u2, ..., ul−1, tl) (x) dul−1...du1

=

∫ t2

0

...

[∫ tl−1

0

tl
∂lCl

∂t1∂t2...∂tl−1∂tl
(t1, 0, ..., 0) (x)

+o
(√

u2
2 + ... + u2

l−1 + t2l

)]
dul−1...du1

= t2t3...tl
∂lCl

∂t1∂t2...∂tl−1∂tl
(t1, 0, ..., 0) (x) + o (t2...tl) .

Finally, by the first Claim we have proved, t1 7→ ∂lCl

∂t1...∂tl
(t1, 0, ..., 0) (x) is con-

tinuous since pi1 = 1. Hence

∂Cl (t1, . . . tl) (x)

∂t1
= t2t3...tl

[
∂lCl

∂t1...∂tl
(0, 0, ..., 0) (x) + o (1)

]

= t2t3...tl
∂lCl

∂t1...∂tl
(0, 0, ..., 0) (x) + o (t2t3...tl)

which completes the proof of the Claim.
We have therefore proved that the map (t, x) 7→ EI (t) (x) is C1. To prove

that it is a diffeomorphism from a neighborhood of the origin onto a neighbor-
hood of x0, then, it will be enough to show that the Jacobian determinant of
EX

η (x0, ·) at the origin is nonzero. Let us compute

∂

∂hi
EI1 (h1)EI2 (h2) · · ·EIp (hp) (x0)/h=0 =

= EI1 (0)EI2 (0) · · · ∂EIi

∂hi
(0) · · ·EIp (0) (x0) =

(
∂EIi (0)

∂hi

)
(x0) =

(
X[Ii]

)
x0

Hence the Jacobian of (5.3) at zero is the matrix having as rows the vectors(
X[Ii]

)
x0

; since the
(
X[Ii]

)
x0

are a basis for R
p, the Jacobian is nonsingular.

Moreover, the same Jacobian is uniformly continuous for x ∈ Ω′, |h| ≤ δ;
therefore from the standard proof of the inverse mapping theorem (see e.g. [48,
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p.221]) one can see that our map is a diffeomorphism of a neighborhood of the
origin {h : |h| < δ1} onto a neighborhood U (x0) of x0 containing {x : |x − x0| < δ2} ,
with δ1, δ2 depending on the number ε and the Xi’s.

The above theorem has important consequences, the first of which is the
following:

Theorem 5.5 (Chow’s theorem for nonsmooth vector fields)

1. (Local statement of connectivity). For any x0 ∈ Ω there exist two neigh-
borhoods of x0, U ⊂ V ⊂ Ω, such that any two points of U can be con-
nected by a curve contained in V, which is composed by a finite number
of arcs, integral curves of the vector fields Xi for i = 0, 1, 2, ..., n.

2. (Global statement of connectivity). If Ω is connected, for any couple of
points x, y ∈ Ω there exists a curve joining x to y and contained in Ω,
which is composed by a finite number of arcs, integral curves of the vector
fields Xi for i = 0, 1, 2, ..., n.

Proof. 1. For any fixed x0 ∈ Ω, let U (x0) be a neighborhood of x0 where, by
Theorem 5.1, the diffeomorphism EX

η (x0, ·) is well defined for a suitable choice
of η. More precisely, we can choose a neighborhood of the kind

Uδ (x0) =
{
EX

η (x0, h) : |h| < δ
}

(with δ small enough so that Uδ (x0) ⊂ Ω). By definition of the map EX
η (x0, ·),

this means that every point of U (x0) can be joined to x0 with a curve which is
composed by a finite number of arcs, integral curves of the vector fields Xi for
i = 0, 1, 2, ..., n with coefficients of the order of δ1/r. Then we can also say that
any two points of U (x0) can be joined by a curve in a similar way. Moreover,
for each point γ (t) of such a curve we have

|γ (t) − x0| ≤ cd (γ (t) , x0) < cδ1/r.

Let us choose h small enough so that

Vδ (x0) =
{
x : |x − x0| < cδ1/r

}
⊂ Ω;

then we have the statement 1, choosing U = Uδ (x0) , V = U ∪ Vδ (x0) .
2. Now we can cover any compact connected subset Ω′ of Ω with a finite

number of neighborhoods U (xi) ⊂ V (xi) ⊂ Ω in such a way that any two points
of Ω′ can be joined by a curve as above, contained in the union of the V (xi)’s,
and therefore in Ω.

Theorem 5.5 shows that it is possible to join any two points of Ω using only
integral lines of the vector fields Xi. This justifies the following:

Definition 5.6 For any δ > 0, let C1 (δ) be the class of absolutely continuous
mappings ϕ : [0, 1] −→ Ω which satisfy

ϕ′ (t) =
n∑

i=0

ai (t) (Xi)ϕ(t) a.e.
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with
|a0 (t)| ≤ δ2, |ai (t)| ≤ δ for i = 1, 2, ..., n.

We define

d1 (x, y) = inf {δ > 0 : ∃ϕ ∈ C1 (δ) with ϕ (0) = x, ϕ (1) = y} .

Remark 5.7 In the smooth case, and for X0 ≡ 0, the distance d1 has been
introduced in [43]. The Authors also prove the equivalence of d and d1 (note
that our d1 is the distance called ρ4 in [43]). One can easily check that this
equivalence, in the smooth case, still holds in presence of a vector field X0 of
weight 2.

By the last theorem, the quantity d1 (x, y) is finite for every x, y ∈ Ω. It is
easy to see that d1 is a distance (it is still true that the union of two consecutive
admissible curves can be reparametrized to give an admissible curve) and, just
by definition, one always has

d (x, y) ≤ d1 (x, y) .

We also have the following:

Proposition 5.8 For any Ω′ ⋐ Ω there exist positive constants c1, c2 such that

c1 |x − y| ≤ d1 (x, y) ≤ c2 |x − y|1/r
for any x, y ∈ Ω′.

Proof. The first inequality is obvious because we already know that d satisfies
it, and d ≤ d1. So let us prove the second one.

Fix x0 ∈ Ω′, and let us consider the map EX
η (x0, h) defined in Theorem 5.1,

for a suitable choice of η. Since

h 7−→ EX
η (x0, h)

is a diffeomorphism, there exist positive constants k1, k2 such that, for x =
EX

η (x0, h) in a suitable neighborhood of x0, we have:

k1 |x − x0| ≤ max
i=1,...,p

|hi| ≤ k2 |x − x0| .

On the other hand, saying that x = EX
η (x0, h) , by definition means that there

exists a curve γ joining x0 to x, which is composed by a finite number N (this
number being under control) of arcs of integral curves of vector fields of the
kinds

±h
pi/|Ij |
j Xi

for i = 0, 1, 2, ..., n, j = 1, 2, ..., p, where
{(

X[Ij ]

)
x0

}
is a basis of R

p (see Remark

4.1). This means that γ satisfies

{
γ′ (τ) =

∑n
i=0 ai (τ) (Xi)γ(τ)

γ (0) = x0, γ (1) = x
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with

|ai (τ)| ≤ c

(
max

j=1,...,p
|hj |

)pi/r

≤ c |x − x0|pi/r
.

This implies that γ ∈ C1

(
c |x − x0|1/r

)
, that is

d1 (x, x0) ≤ c |x − x0|1/r
. (5.12)

So far, we have proved that every point x0 has a neighborhood U such that for
any x ∈ U one has (5.12), where c is locally uniformly bounded with respect to
x0. Then one can also say that every point x0 has a neighborhood V such that
for any x, y ∈ U one has

d1 (x, y) ≤ c |x − y|1/r
.

A covering argument then implies the desired statement.
We now want to prove the local equivalence of d and d1. To this aim, we

fix a point x0 ∈ Ω′ ⋐ Ω and make use once again of the smooth approximating
vector fields Sx0

i . Let us now denote by

dS , dS,1, dX , dX,1

the distances d and d1 induced by the systems {Sx0

i } and {Xi}, respectively.
The above proposition allows us to repeat also for the distances dS,1, dX,1 the
proof of Theorem 3.4, and get the following:

Theorem 5.9 For any Ω′ ⋐ Ω, there exist positive constants c1, c2, r0 such that

B1
S (x0, c1ρ) ⊂ B1

X (x0, ρ) ⊂ B1
S (x0, c2ρ)

for any x0 ∈ Ω′, ρ < r0, where B1
S , B1

X denote the metric balls with respect to
dS,1, dX,1, respectively.

Since, by the smooth theory, we already know that dS,1 is locally equivalent
to dS (see Remark 5.7) the last theorem immediately implies the following result,
which strengthens in a quantitative way the connectivity result contained in
Chow’s theorem:

Theorem 5.10 The distances dX,1 and dX are locally equivalent in Ω′. More
precisely there exist positive constants ρ0 and C such that for every w ∈ Ω′ and
y, z ∈ BX (w, ρ0) we have

dX,1 (y, z) ≤ CdX (y, z) .

(The reverse inequality d (y, z) ≤ d1 (y, z) obviously holds by definition of d, d1).
As a consequence, the doubling condition of Theorem 3.5 still holds with respect
to d1.
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Another quantitative consequence of the connectivity property is the possi-
bility of a pointwise control of the increment of a function f by means of its
“gradient” Xf = (Xif)n

i=0 (that is, |Xf | is an upper gradient in the terminology
of [25]).

Theorem 5.11 Let f ∈ C1 (B1 (x0, ρ)), let x ∈ B1 (x0, ρ) and let γ ∈ C1 (ρ) be
a curve that joins x0 with x. Then

|f (x) − f (x0)| 6
√

nρ

∫ 1

0

|Xf (γ (t))| dt.

As a consequence we also have

|f (x) − f (x0)| ≤
√

nd1 (x, x0) · sup
B1(x0,ρ)

|Xf | ∀x ∈ B1 (x0, ρ) ,

|f (x) − f (y)| ≤
√

nd1 (x, y) · sup
B1(x0,ρ)

|Xf | ∀x, y ∈ B1

(
x0,

ρ

3

)
.

Proof. Let x ∈ B1 (x0, ρ) , then there exists a curve γ (t) such that

γ (0) = x0; γ (1) = x

γ′ (t) =

n∑

i=1

ai (t) (Xi)γ(τ)

with |ai (t)| ≤ ρ, then

f (x) − f (x0) =

∫ 1

0

d

dt
(f (γ (t))) dt =

=

∫ 1

0

n∑

i=1

ai (t) (Xi)γ(t) · ∇f (γ (t)) dt

=

∫ 1

0

n∑

i=1

ai (t) (Xif) (γ (t)) dt

|f (x) − f (x0)| ≤
∫ 1

0

√√√√
n∑

i=1

ai (t)
2 ·

√√√√
n∑

i=1

(Xif) (γ (t))dt

≤
√

nρ

∫ 1

0

|Xf (γ (t))| dt

≤
√

nρ sup
B1(x0,ρ)

|Xf | .

For any x, y ∈ B1 (x0, ρ/3) , now, we have y ∈ B1 (x, 2ρ/3) and

|f (x) − f (y)| ≤
√

nd (x, y) sup
B1(x,2ρ/3)

|Xf | ≤
√

nd (x, y) sup
B1(x0,ρ)

|Xf | .
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6 Lifting of nonsmooth vector fields

In the proof of Poincaré’s inequality we will use an idea of Jerison (see [28])
which consists in deriving such inequality first for free vector fields and then in
the general case. This approach requires to develop in the context on nonsmooth
vector fields both Rothschild-Stein’s lifting technique [47] and an estimate for
the volume of lifted balls which was originally proved by Sanchez-Calle [50] and
Nagel-Stein-Wainger [43]. These tools can also be of independent interest.

In what follows we keep the previous assumptions on the vector fields X1, X2, . . . , Xn

and we take X0 ≡ 0. Recall that a system of n vector fields is said to be free
up to step r if the vector fields and their commutators of length at most r
do not satisfy any linear dependence relations except those which follow from
anticommutativity and Jacobi identity.

Theorem 6.1 (Lifting theorem) For every x0 ∈ Ω, there exist a neighbor-
hood U (x0) , an integer m and vector fields of the form

X̃k = Xk +

m∑

j=1

ukj (x, t)
∂

∂tj
(k = 1, 2, ..., n) (6.1)

defined for (x, t) ∈ U (x0) × I where I is a neighborhood of 0 ∈ R
m, which are

free up to step r and such that
{
X̃[I] (x, t)

}

|I|≤r
span R

p+m for every (x, t) ∈
U (x0)×I. Moreover the ukj (x, t) can be taken as polynomials of degree at most
r − 1.

After the original paper [47], alternative proofs of this result (for smooth
vector fields) have been given by several authors. For our purposes the most
useful is the one given by Hörmander-Melin [27]. Indeed, a careful inspection
of their proof shows that it actually requires only the Cr−1 regularity of the
coefficients and therefore it applies also to our nonsmooth context.

In the sequel we will use both the lifting procedure and our approximation
procedure by Taylor expansion of degree r − 1 (see §3). Since the coefficients
ukj (x, t) are polynomials of degree ≤ r − 1 one can easily see that these two

procedures commute. We will denote by S̃x
i the “lifted approximating field”.

The next theorem contains a comparison between the volume of balls with
respect to the original vector fields Xi and their lifted X̃i; we will denote these
balls with the symbol B, B̃, respectively. Thanks to the results proved in §5, here
the distance induced by each system of vector fields can be either d (definition
2.2) or d1 (definition 5.6). To prove Poincaré’s inequality we will apply the
result for d1.

Theorem 6.2 Let x0 and U (x0) , I be as in the above theorem. There exist
positive constants c1, c2, r0, and δ ∈ (0, 1) such that for any (x, h) ∈ U (x0)× I,
any y ∈ B (x, δρ) , 0 < ρ < r0, we have, denoting by |·| the volume of a ball in
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the appropriate dimension,

c1

∣∣∣B̃ ((x, h) , ρ)
∣∣∣

|B (x, ρ)| 6

∫

Rm

χ
eB((x,h),ρ) (y, s) ds 6 c2

∣∣∣B̃ ((x, h) , ρ)
∣∣∣

|B (x, ρ)| . (6.2)

Actually the second inequality holds for every y ∈ R
p. Also, the projection of

B̃ ((x, h) , ρ) on R
p is exactly B (x, ρ) .

Proof. As already noted, for smooth vector fields (6.2) has been proved in [50]
and [43]. See also [28] where the result is stated exactly in this form. Let us

denote by BSx , B̃Sx the balls defined with respect to the vector fields Sx
i and

S̃x
i respectively. Since, by Theorem 5.9,

BSx (x, k1ρ) ⊂ B (x, ρ) ⊂ BSx (x, k2ρ)

and
B̃Sx ((x, h) , k1ρ) ⊂ B̃ ((x, h) , ρ) ⊂ B̃Sx ((x, h) , k2ρ) ,

the result follows from (6.2) applied to the smooth vector fields Sx
i and S̃x

i and

the doubling property of Theorem 5.10. Also, since the lifted vector field X̃i

projects onto Xi, by definition of distance the projection of B̃ ((x, h) , ρ) on R
p

is exactly B (x, ρ) .

7 Poincaré’s inequality

For smooth Hörmander’s vector fields, Poincaré’s inequality has been proved by
Jerison in [28]. Lanconelli-Morbidelli in [33] have developed a general approach
to Poincaré’s inequality for (possibly nonsmooth) vector fields: they first prove
an abstract result, which deduces Poincaré’s inequality from a property which
they call “representability of balls by means of controllable almost exponential
maps”, and then show how to apply this general result in several different sit-
uations. One of these situations is the classical case of smooth Hörmander’s
vector fields.

We will prove Poincaré’s inequality in our context applying the aformen-
tioned abstract result. To check the assumption of this theorem, we will ex-
ploit all our previous theory, plus some results and arguments used in [33] to
handle the smooth case. Also, for technical reasons which will be explained
later, we need to apply this abstract result to free vector fields, and then derive
Poincaré’s inequality in the general case from that proved in the free case, as
already done by Jerison [28] in the smooth setting. By the way, we remark that
it seems hard to apply directly Jerison’s argument to the nonsmooth vector
fields (without relying on Lanconelli-Morbidelli’s theory), since this would re-
quire also Rothschild-Stein’s approximation technique, which in our nonsmooth
setting is not presently available.

Henceforth we will further strengthen our assumption as follows:

Assumptions (D). We assume that for some integer r ≥ 2 and some
bounded domain Ω ⊂ R

p the following hold:
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(D1) The coefficients of the vector fields X1, X2, ..., Xn belong to Cr−1,1 (Ω) ,
while X0 ≡ 0. Here and in the following, Ck,1 stands for the classical space
of functions with Lipschitz continuous derivatives up to order k.

(D2) The vectors
{(

X[I]

)
x

}
|I|≤r

span R
p at every point x ∈ Ω.

Assumptions (D) will be in force throughout this section and the following.
See, however, our Remark 7.13 at the end of this section, for an inequality that
holds under weaker assumptions.

Remark 7.1 The lacking of X0 is a natural assumption dealing with Poincaré-
type inequalities. Note that, since X0 ≡ 0, length and weight of a multiindex now
coincide. Also note that under the assumption (D1) above, for any 1 ≤ k ≤ r,
the differential operators

{XI}|I|≤k

are well defined, and have Cr−k,1 coefficients. The same is true for the vector
fields

{
X[I]

}
|I|≤k

.

Dependence of the constants. Whenever we will write that some con-
stant depends on the vector fields Xi’s and some fixed domain Ω′ ⋐ Ω, this will
mean that the constant depends on:

(i) diam(Ω′);
(ii) the norms Cr−1,1 (Ω) of the coefficients of Xi (i = 1, 2, ..., n);
(iii) a positive constant c0 such that the following bound holds:

inf
x∈Ω′

max
|I1|,|I2|,...,|Ip|≤r

∣∣∣det
((

X[I1]

)
x
,
(
X[I2]

)
x
, ...,

(
X[Ip]

)
x

)∣∣∣ ≥ c0.

In the following we will sometimes work with the lifted vector fields, defined
in §6, so that the constants appearing in our results will also depend on the
constants in (ii)-(iii) associated to the lifted vector fields. However, as observed
by Jerison [28, Lemma (4.2) p.511], these in turn only depend on the constants
in (ii)-(iii) corresponding to the original vector fields Xi’s.

Let us state our main result:

Theorem 7.2 (Poincaré’s inequality) For any Ω′ ⋐ Ω there exist constants
c, r0 > 0, λ ≥ 1 such that for any dX,1-ball B = B (x, ρ) , with ρ ≤ r0, x ∈ Ω′,
any u ∈ C1

(
λB

)
, with λB = B (x, λρ) , we have

∫

B×B

|u (y) − u (x)| dydx ≤ cρ |B|
∫

λB

|Xu (y)| dy (7.1)

where:

|Xu (y)| =

√√√√
n∑

j=1

|Xju (y)|2.
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Note that (7.1) is equivalent to the following (perhaps more familiar) form
of Poincaré’s inequality:

∫

B

|u (y) − uB| dy ≤ cρ

∫

λB

|Xu (y)| dy (7.2)

where, as usual, uB denotes the average of u over B.

We start showing that Poincaré’s inequality for free vector fields implies the
same result in the general case.

So, fix x0 ∈ Ω and a neighborhood U (x0) ⊂ Ω where the lifting theorem 6.1

can be applied, and let X̃i be the lifted free vector fields in U (x0) × I. Then

for any U ′ (x0) ⋐ U (x0) , x ∈ U ′ (x0) , if B̃ = B̃ ((x, h) , ρ) is a d
eX,1-ball with

ρ ≤ r0 and λB̃ = B̃ ((x, h) , λρ) , we have

∫

eB× eB

|u (y, t) − u (z, s)| dydzdsdt ≤ cρ
∣∣∣B̃

∣∣∣
∫

λ eB

∣∣∣X̃u (y, t)
∣∣∣ dydt (7.3)

for any u ∈ C1
(
λB̃

)
. If we apply (7.3) to a function u (y) independent of t,

u ∈ C1
(
λB

)
, then by (6.1) we get

∫

eB× eB

|u (y) − u (z)| dydzdsdt ≤ cρ
∣∣∣B̃

∣∣∣
∫

λ eB

|Xu (y)| dydt

that is (since B̃ projects onto B)

∫

B×B

|u (y) − u (z)| dydz

∫

Rm

χ
eB((x,h),ρ) (y, t)dt

∫

Rm

χ
eB((x,h),ρ) (z, s)ds ≤

≤ cρ
∣∣∣B̃

∣∣∣
∫

λB

|Xu (y)| dy

∫

Rm

χ
eB((x,h),ρ) (y, t) dt

which, by Theorem 6.2, implies (7.1).
A standard compactess argument then gives theorem 7.2.

We now proceed to prove theorem 7.2 under the additional assumption that
the vector fields Xi are free up to step r.

Let us start fixing some notation. Throughout this section we will assume
fixed a bounded domain Ω′ ⋐ Ω. Let

{
X[Ij ]

}
Ij∈η

be any particular family of p

commutators of our vector fields {Xi}n
i=1, with |Ij | ≤ r; let

|η| =

p∑

j=1

|Ij | ;

‖h‖η = max
j=1,...,p

|hj|1/|Ij | for any h ∈ R
p;

Qη (ρ) =
{
h ∈ R

p : ‖h‖η ≤ ρ
}

for any ρ > 0.
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Let us recall that (see Theorem 5.1) EX
η (x, h) is C1 in the joint variables (x, h)

for x ∈ Ω′ and |h| < δ1. Moreover, if
{
X[Ij ]

}
Ij∈η

is a family of commutators

which spans R
p at x0 ∈ Ω′ (and therefore in the whole Ω′, since the Xi’s are

free) and satisfies (5.2), then h 7−→ EX
η (x, h) is a diffeomorphism of a neighbor-

hood of the origin {h : |h| < δ1} onto a neighborhood U (x0) of x0 containing
{x : |x − x0| < δ2} .

We also denote by
DEX

η (x,h)

the modulus of the Jacobian determinant of the mapping h 7−→ EX
η (x, h) . The

function DEX
η (x,h) is continuous for x ∈ Ω′ and |h| < δ1; moreover,

DEX
η (x,0) =

∣∣∣∣det
{(

X[Ij ]

)
x

}p

j=1

∣∣∣∣ > 0 for any x ∈ Ω′.

For any fixed x0 ∈ Ω′, let now {Sx0

i } be the system of smooth approximating
vector fields, introduced in §3. We know that (see Lemma 3.2) the Sx0

i ’s satisfy
Hörmander’s condition in

Uδ (x0) = {x ∈ Ω : |x − x0| < δ} .

For any x0 ∈ Ω′ we can therefore consider the system of smooth Hörmander’s
vector fields {Sx0

i } in Uδ (x0) , and perform for this system, as in §5, the con-
struction of the maps

Cℓ(I) (t, Sx0

I ) (x)

and that of the corresponding diffeomorphism

ESx0

η (x, h) .

It is now time to recall what is the abstract result proved in [33] regard-
ing Poincaré inequality, how the Authors use it to deduce Jerison’s Poincaré
inequality (in the smooth case), and how we can adapt their arguments to our
context. As we will see, a key feature of our approach is a suitable mix of the two
systems of vector fields {Xi} , {Sx0

i }, and of the corresponding maps EX
η , ESx0

η .
Let us start recalling a definition from [33].

Definition 7.3 Let O be a bounded open set in R
p, and Q a neighborhood of

the origin. We say that a function

E : O × Q → R
p

is an almost exponential map if

(i) E (x, 0) = x ∀x ∈ O

(ii) the map h 7−→ E (x, h) is C1 and 1-1 on Q
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(iii) the following condition holds:

1

a
DE(x,0) ≤ DE(x,h) ≤ aDE(x,0)∀ (x, h) ∈ O × Q, some constant a > 1

(where DE(x,h) stands for the modulus of the Jacobian determinant of the
mapping h 7−→ E (x, h)).

The abstract theorem proved by Lanconelli-Morbidelli reads as follows:

Theorem 7.4 (Theorem 2.1 in [33]) Let B = BX
1 (x0, ρ) be a fixed ball. As-

sume there exists an open set O ⊂ B, an almost exponential map E : O×Q → R
p

and two positive constants α, β satisfying the following conditions:

(i) |B| ≤ α |O| and B ⊂ E (x, Q) for every x ∈ O;

(ii) E is X-controllable with a hitting time T ≤ αρ;

(iii) |(α + 1)B| ≤ β |O| .

Then there exists c > 0 such that
∫

B×B

|u (y) − u (x)| dydx ≤ cρ |B|
∫

(1+α)B

|Xu (y)| dy

for any u ∈ C1
(
(1 + α) B

)
, where (1 + α)B = B (x0, (1 + α) ρ). The constant

c only depends on the numbers α, β, the constant a appearing in Definition 7.3
and the constant b appearing in Definition 7.7.

We will recall and comment later the definition of “X-controllable map”.
Our strategy consists in showing that the map

(x, h) 7−→ ESx

η (x, h)

satisfies the assumption of the previous theorem, on suitable domains O, Q, for
a suitable choice of η. Note that this map, built upon the system {Sx0

i } , will be
shown to satisfy the assumptions of the theorem with respect to the system {Xi}.
Also, note that in the definition of this map E the point x0 where the system
{Sx0

i } approximates {Xi} is taken equal to x, that is “unfrozen”. Therefore our
map E will be only Lipschitz continuous with respect to x. These facts will
require some care.

First of all, we can apply to the system of smooth Hörmander’s vector fields
Sx0

i , in the domain Uδ (x0) , Theorem 4.1 in [33]:

Theorem 7.5 For any x0 ∈ Ω′ ⋐ Ω there exist positive constants r0, c1, c2, with
c2 < c1 < 1, such that for any family η of p commutators, x ∈ Uδ (x0) , ρ ≤ r0

satisfying the inequality

DESx0
η (x,0)ρ

|η| ≥ 1

2
max

ζ
DESx0

ζ (x,0)ρ
|ζ|
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the following assertions hold:
(a) If h ∈ Qη (c1ρ) then

1

4
DESx0

η (x,0) ≤ DESx0
η (x,h) ≤ 4DESx0

η (x,0)

(b) B1
Sx0 (x, c2ρ) ⊂ ESx0

η (x, Qη (c1ρ)) .

(c) The function ESx0

η (x, ·) is one-to-one on the set Qη (c1ρ) .
Here B1

Sx0 stands for the metric ball with respect to the distance dSx0 ,1.

As the Authors write in [33], the above theorem, in the case of smooth
Hörmander’s vector fields, has a proof similar to that of Theorem 7 in [43],
which is written in detail in [42]. Note that the constants r0, c1, c2 in the above
Theorem only depend on the Xi’s and Ω′, and not on x0 (see the discussion in
§ 3). We can then set x = x0 in the above theorem, obtaining the following:

Theorem 7.6 For any Ω′ ⋐ Ω there exist positive constants r0, c1, c2, with
c2 < c1 < 1, such that for any family η of p commutators, x ∈ Ω′, ρ ≤ r0

satisfying the inequality

DESx
η (x,0)ρ

|η| ≥ 1

2
max

ζ
DESx

ζ (x,0)ρ
|ζ| (7.4)

the following assertions hold:
(a’) If h ∈ Qη (c1ρ) then

1

4
DESx

η (x,0) ≤ DESx
η (x,h) ≤ 4DESx

η (x,0) (7.5)

(b’) B1
X (x, c2ρ) ⊂ ESx

η (x, Qη (c1ρ)) .

(c’) The function ESx

η (x, ·) is one-to-one on the set Qη (c1ρ) .
Here B1

X stands for the metric ball with respect to the distance dX,1.

Note that (b’) also exploits Theorem 5.9 (with possibly a smaller value of
c2).

In the following we will need to shrink the constant r0 appearing in this
theorem; however this is not restrictive.

In order to find the sets O, Q to which we will apply Theorem 7.4 we now
proceed like in [33, p.336]: let B be a dX

1 -ball centered at some x0 ∈ Ω′ of radius
ρ < c2r0/2. For any family η of p commutators of lenght ≤ r, we define

Ωη =

{
x ∈ B : DEη(x,0)

(
2ρ

c2

)|η|

>
1

2
max

ζ
DEζ(x,0)

(
2ρ

c2

)|ζ|
}

. (7.6)

Here DEη(x,0) stands for both DESx
η (x,0) and DEX

η (x,0) (since the two quantities

coincide). At least one of the sets Ωη satisfies

|Ωη| ≥
1

N
|B| (7.7)
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where N is the total number of p-tuples available. Let us choose one of such η’s
and denote by Q the box

Q =

{
h ∈ R

p : ‖h‖η <
2c1

c2
ρ

}
.

From now on, the basis η is chosen once and for all. By (a’) and (c’) of Theorem
7.6, the function

E : Ωη × Q → R
p (7.8)

(x, h) 7→ ESx

η (x, h)

is an almost exponential map. The fact that h 7→ ESx

η (x, h) is C1 follows from
Theorem 5.1 applied to the smooth vector fields Sx

i (for any frozen x).
We will show that the almost exponential map E we have just built sat-

isfies assumptions (i),(ii),(iii) in Theorem 7.4. This will imply our Poincaré’s
inequality.

By (7.7), |B| ≤ N |Ωη| , while by (b’) of Theorem 7.6, B ⊂ E (x, Q) for
every x ∈ Ωη. Thus assumption (i) in Theorem 7.4 is satisfied, while assumption
(iii) follows from the doubling condition for dX

1 balls, which we have proved in
Theorem 5.10, plus inequality |B| ≤ N |Ωη| .

It remains to prove that the map E is “X-controllable with a hitting time
T ≤ αρ”, that is, condition (ii). Let us first recall the definition of this concept,
as appears in [33, p.330]:

Definition 7.7 We say that an almost exponential map E : O×Q → R
p is X-

controllable with a hitting time T if there exists a function γ : O×Q×[0, T ] → R
p

such that
(C1) For any (x, h) ∈ O×Q, t 7→ γ (x, h, t) is an X-subunit path connecting

x and E (x, h) , that is

{
d
dtγ (x, h, t) =

∑
aj (t) (Xj)γ(x,h,t) for suitable aj with

∑ |aj (t)|2 ≤ 1

γ (x, h, 0) = x; γ (x, h, T (x, h)) = E (x, h)

for a suitable T (x, h) ≤ T.
(C2) For any (h, t) ∈ Q × [0, T ] , x 7→ γ (x, h, t) is a one-to-one C1 map

having jacobian determinant bounded away from zero, i.e.

b ≡ inf
O×Q×[0,T ]

∣∣∣∣
∂γ

∂x

∣∣∣∣ > 0.

We start noting that condition (C2) is used in [33, p.330] only once, in the
following change of variable:

∫

O

|Xu (γ (x, h, t))| dx ≤ 1

b

∫

B(x0,(α+1)ρ)

|Xu (z)| dz.

It is then apparent that (C2) can be replaced by the weaker assumption:
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(C2’) For any (h, t) ∈ Q × [0, T ] , x 7→ γ (x, h, t) is a one-to-one bilipschitz
map having jacobian determinant bounded away from zero, i.e.

b ≡ inf
O×Q×[0,T ]

∣∣∣∣
∂γ

∂x

∣∣∣∣ > 0.

In view of Theorem 7.4, our proof of Theorem 7.2 will be completed as soon
as we will prove the following:

Proposition 7.8 The almost exponential map E defined in (7.8) is X-controllable
with a hitting time T ≤ αρ, in the sense of the above definition with (C1), (C2’),
where α and ρ are as above.

Remark 7.9 Before going on, we have to make an important observation, in
order to explain the role played by the fact that our vector fields Xi are free.
In the following, we need to choose a basis

{
X[I]

}
I∈η

satisfying simultaneously

the condition expressed in (7.6), which is fundamental to apply the theory of
Lanconelli-Morbidelli, and the condition (5.2) in Theorem 5.1, which allows us
to have a quantitative control on the diffeomorphism induced by the basis. This
could impossible for a general family of Hörmander’s vector fields, but it is easy
as soon as they are free.

Namely, since the vector fields Xi are free up to step r, they satisfy the same
commutation relations (up to step r) at any point of Ω. Therefore all the possible
families of p vector fields chosen among the commutators of length ≤ r of the
Xi’s can be grouped in two classes:

E =
{
η : DEη(x,0) 6= 0 for all x ∈ Ω

}
;

Ec =
{
η : DEη(x,0) = 0 for all x ∈ Ω

}
.

If we choose a basis η satisfying the relation

DEη(x,0)

(
2ρ

c2

)|η|

>
1

2
max

ζ
DEζ(x,0)

(
2ρ

c2

)|ζ|

,

this means that η ∈ E, hence DEη(x,0) 6= 0 in the whole Ω. In order to apply
Theorem 5.1 with a control on the constants which are involved, we need to know
that, for some fixed ε,

DEη(x,0) > (1 − ε)max
ζ

DEζ(x,0) (7.9)

Now,
DEη(x,0) ≥ min

ζ∈E
DEζ(x,0) > (1 − ε)max

ζ
DEζ(x,0)

because: since the vector fields are free, all the determinants relative to different
bases control each other by universal constants. This means that (7.9) holds
with a universal constant ε.
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Let us now proceed toward the proof of Proposition 7.8. First of all, we have
the following:

Lemma 7.10 There exists a constant c > 0 depending on Ω′ and the Xi’s such
that

ESx

η (x, Qη (ρ)) ⊂ EX
η (x, Qη (cρ)) ∀x ∈ Ωη. (7.10)

Proof. Let y ∈ ESx

η (x, Qη (ρ)) ; this means that

y = ESx

η (x, h) for some ‖h‖η ≤ ρ,

and we want to prove that there exists h′, with ‖h′‖η ≤ cρ, such that

ESx

η (x, h) = EX
η (x, h′) .

Since, by Theorem 5.1, for any x ∈ Ω′ the mapping

h′ 7−→ EX
η (x, h′)

is a diffeomorphism (for |h′| < δ), we can invert it, writing

h′ = Θ (h) ≡ EX
η (x, ·)−1

ESx

η (x, h) .

Moreover, by Remark 7.9, the constants involved in this diffeomorphism are
under control.

We want to prove that
‖h′‖η 6 c ‖h‖η (7.11)

for some constant c > 0 only depending on Ω′ and the Xi’s. We have

‖h′‖η 6 c
(
‖h‖η + ‖h′ − h‖η

)

6 c
(
‖h‖η + |h′ − h|1/r

)
(7.12)

Since EX
η (x, ·)−1

is a diffeomorphism, we have

|h′ − h| =
∣∣∣EX

η (x, ·)−1 ESx

η (x, h) − EX
η (x, ·)−1 EX

η (x, h)
∣∣∣

6 c
∣∣∣ESx

η (x, h) − EX
η (x, h)

∣∣∣ (7.13)

We are going to show that

∣∣∣ESx

η (x, h) − EX
η (x, h)

∣∣∣ 6 c ‖h‖r
η (7.14)

which, together with (7.11), (7.12), (7.13), will imply our assertion.
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Namely,

ESx

η (x, h) =

M∏

j=1

exp
(∣∣hij

∣∣1/lj
σjS

x
rj

)
(x) ;

EX
η (x, h) =

M∏

j=1

exp
(∣∣hij

∣∣1/lj
σjXrj

)
(x)

(here σj = ±1). Set:

yn =

n∏

j=1

exp
(∣∣hij

∣∣1/lj
σjS

x
rj

)
(x)

ỹn =

n∏

j=1

exp
(∣∣hij

∣∣1/lj
σjXrj

)
(x)

and let us show by induction on n that |yn − ỹn| 6 c ‖h‖r
η. For n = 1 we can

apply directly the argument in the proof of Theorem 3.4, getting

|y1 − ỹ1| 6 c
(
|hi1 |1/l1

)r

6 c ‖h‖r
η .

Assuming the assertion for n, let us write now:

yn+1 = exp
(∣∣hin+1

∣∣1/ln+1
σn+1S

x
rj

)
(yn) ;

ỹn+1 = exp
(∣∣hin+1

∣∣1/ln+1
σn+1Xrj

)
(ỹn) .

We can repeat again the argument in the proof of Theorem 3.4. Let

yn+1 = ϕ (1) ; ỹn+1 = γ (1) with

{
ϕ′ (τ) =

∣∣hin+1

∣∣1/ln+1
σn+1

(
Sx

rj

)

ϕ(τ)

ϕ (0) = yn

{
γ′ (τ) =

∣∣hin+1

∣∣1/ln+1
σn+1

(
Xrj

)
γ(τ)

γ (0) = ỹn

Then

ϕ (s) − γ (s) = yn − ỹn +

∫ s

0

[ϕ′ (τ) − γ′ (τ)] dτ =

= yn − ỹn +

∫ s

0

∣∣hin+1

∣∣1/ln+1
σn+1

[(
Sx

rj

)

ϕ(τ)
−

(
Xrj

)
ϕ(τ)

]
dτ+

+

∫ s

0

∣∣hin+1

∣∣1/ln+1
σn+1

[(
Xrj

)
ϕ(τ)

−
(
Xrj

)
γ(τ)

]
dτ

= A + B + C.

Now, by inductive assumption,

|A| ≤ c ‖h‖r
η
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while by (3.2)

|B| ≤ c

∫ s

0

∣∣hin+1

∣∣1/ln+1 |ϕ (τ) − x|r−1 dτ ≤

≤ c

∫ s

0

‖h‖η ‖h‖
r−1
η dτ ≤ c ‖h‖r

η

where we used the fact that

|ϕ (τ) − x| ≤ |ϕ (τ) − yn| +
n∑

k=2

|yk − yk−1| + |y1 − x| ≤ c
n+1∑

k=1

|hik
|1/lk ≤ c ‖h‖η .

Finally,

|C| ≤ c

∫ s

0

∣∣hin+1

∣∣1/ln+1 |ϕ (τ) − γ (τ)| dτ ≤ c ‖h‖η

∫ s

0

|ϕ (τ) − γ (τ)| dτ.

Collecting the previous inequalities, Gronwall’s Lemma implies

|ϕ (s) − γ (s)| ≤ c ‖h‖r
η ,

which for s = 1 gives the desired assertion. This ends the proof of (7.14) and
hence of (7.10).

Next, we need the following:

Lemma 7.11 For any y ∈ Ωη and h ∈ Q, the map

x 7−→ ESx

η (y, h)

is Lipschitz continuous in Ωη, and its Jacobian satisfies:
∣∣∣∣∣
∂ESx

η (y, h)

∂x

∣∣∣∣∣ ≤ c |h|1/r
for a.e. x ∈ Ωη.

Also, for any y ∈ Ωη the map (x, h) 7−→ ESx

η (y, h) is continuous in Ωη × Q.

Proof. Continuity with respect to (x, h) , as well as Lipschitz continuity with
respect to x are immediate. Let us prove the bound on derivatives. We have

∂

∂x

[
ESx

η (y, h)
]

=
∂

∂x






M∏

j=i

exp
(∣∣hkj

∣∣1/lkj σjS
x
rj

)

 (y)




with σj = ±1. To fix ideas, let us compute the derivative of the composition of
two such terms:

∂

∂x

[
exp

(
|hk1

|1/lk1 σ1S
x
r1

)
exp

(
|hk2

|1/lk2 σ2S
x
r2

)
(y)

]

=
∂

∂x

[
exp

(
|hk1

|1/lk1 σ1S
x
r1

)
(z)

]

z=exp
“

|hk2 |1/lk2 σ2Sx
r2

”

(y)
+

+
∂

∂z

[
exp

(
|hk1

|1/lk1 σ1S
x
r1

)
(z)

]

z=exp
“

|hk2 |1/lk2 σ2Sx
r2

”

(y)
· ∂

∂x

[
exp

(
|hk2

|1/lk2 σ2S
x
r2

)
(y)

]

≡ A (h, x) + B (h, x) · C (h, x) .
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Let us inspect the term A (h, x). In order to compute

∂

∂x

[
exp

(
|hk1

|1/lk1 σ1S
x
r1

)
(z)

]
,

let us write
exp

(
|hk1

|1/lk1 σ1S
x
r1

)
(z) = γ (x, 1)

with {
dγ
∂τ (x, τ) = |hk1

|1/lk1 σ1

(
Sx

r1

)
γ(x,τ)

γ (x, 0) = z.

Then

|γ (x + w, τ) − γ (x, τ)| ≤ |hk1
|1/lk1

∫ τ

0

∣∣∣
(
Sx+w

r1

)
γ(x+w,s)

−
(
Sx

r1

)
γ(x,s)

∣∣∣ ds

≤ |hk1
|1/lk1

∫ τ

0

∣∣∣
(
Sx+w

r1

)
γ(x+w,s)

−
(
Sx

r1

)
γ(x+w,s)

∣∣∣ ds+

+ |hk1
|1/lk1

∫ τ

0

∣∣∣
(
Sx

r1

)
γ(x+w,s)

−
(
Sx

r1

)
γ(x,s)

∣∣∣ ds

≡ A1 + A2.

Now, since the coefficients of the vector field Sx
r1

depend in a Lipschitz contin-
uous way on the point x,

|A1| ≤ c |hk1
|1/lk1 |w| τ

while

|A2| ≤ |hk1
|1/lk1

∫ τ

0

|γ (x + w, s) − γ (x, s)| ds

and, by Gronwall’s inequality,

|γ (x + w, τ) − γ (x, τ)| ≤ c |hk1
|1/lk1 |w| τ,

which for τ = 1 gives
∣∣∣exp

(
|hk1

|1/lk1 σ1S
x+w
r1

)
(z) − exp

(
|hk1

|1/lk1 σ1S
x
r1

)
(z)

∣∣∣ ≤ c |hk1
|1/lk1 |w| .

This shows that x 7→ exp
(
|hk1

|1/lk1 σ1S
x
r1

)
(z) is Lipschitz continuous with

Lipschitz constant ≤ c |hk1
|1/lk1 . Hence, the L∞ function

x 7→ ∂

∂x
exp

(
|hk1

|1/lk1 σ1S
x
r1

)
(z)

has L∞ norm ≤ c |hk1
|1/lk1 .

The term C (h, x) is similar to A (h, x). As to the term

B (h, x) =
∂

∂z

[
exp

(
|hk1

|1/lk1 σ1S
x
r1

)
(z)

]
,
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note that the exponential is taken with respect to a smooth vector field, and the
derivative of an exponential with respect to the initial condition z is bounded

in terms of the derivatives of the coefficients of the vector field |hk1
|1/lk1 σ1S

x
r1

which is bounded by c |hk1
|1/lk1 , uniformly with respect to x. By composition,

we can conclude that ∣∣∣∣
∂

∂x

[
ESx

η (y, h)
]∣∣∣∣ ≤ c |h|1/r

for a.e. x ∈ Ωη, any y ∈ Ωη, h ∈ Q.

Lemma 7.12 Let

Θ (x, h) = EX
η (x, ·)−1

ESx

η (x, h) for (x, h) ∈ Ωη × Q.

Then, the mapping (x, h) 7→ Θ (x, h) is Lipschitz continuous in Ωη × Q. More-
over, the Jacobian JΘ(x,h) of the map x 7→ Θ (x, h) satisfies

∥∥JΘ(·,h)

∥∥
L∞(Ωη)

≤ ω (h) ∀h ∈ Q,

where ω (h) → 0 as h → 0.

Proof. The function
ESx

η (y, h)

is C1 with respect to (y, h) , locally uniformly with respect to x and, by Lemma
7.11, is Lipschitz continuous with respect to x; hence

(x, h) 7→ ESx

η (x, h)

is Lipschitz continuous. Let us show that the function

(x, y) 7→ EX
η (x, ·)−1

(y)

is C1 in the joint variables; this will allow to conclude that (x, h) 7→ Θ (x, h) is
Lipschitz continuous in Ωη × Q.

Let us consider the function

G (x, y, h) = y − EX
η (x, h) .

Since the function (x, h) 7→ EX
η (x, h) is C1 in the joint variables, G (x, x, 0) = 0

and ∂G
∂h (x, x, 0) has maximal rank, by the implicit function theorem there exists

a unique C1 function h = F (x, y) such that

G (x, y, F (x, y)) = 0.

This F is exactly (x, y) 7→ EX
η (x, ·)−1

(y) , so we are done.
We now want to prove the bound on the Jacobian of Θ.
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Since Θ (x, 0) = 0 ∀x, for h = 0 the Jacobian of Θ (·, 0) vanishes. We have
therefore to prove that JΘ(x,h) is continuous at h = 0, uniformly with respect
to x. We have, with the obvious meaning of symbols,

JΘ(x,h) =
(
Jx 7→EX

η (x,·)−1(y)

)

y=ESx
η (x,h)

+
(
Jy 7→EX

η (x,·)−1(y)

)

y=ESx
η (x,h)

· Jx 7→ESx
η (x,h)

=
(
Jx 7→EX

η (x,·)−1(y)

)

y=ESx
η (x,h)

+
(
JEX

η (x,·)

)−1

(Θ (x, h)) · Jx 7→ESx
η (x,h).

Differentiating with respect to x the identity

F
(
x, EX

η (x, h′)
)

= h′

we get
∂

∂x
F

(
x, EX

η (x, h′)
)

+
∂

∂y
F

(
x, EX

η (x, h′)
)
· JEX

η (·,h′) = 0

that is
(

∂

∂x
F (x, y)

)

/y=ESx
η (x,h)

= −
(

∂

∂y
F (x, y)

)

/y=ESx
η (x,h)

· Jx 7→EX
η (x,h′) =

= −
(
JEX

η (x,·)

)−1

(h′) · Jx 7→EX
η (x,h′).

Hence

JΘ(·,h) = −
(
JEX

η (x,·)

)−1

(h′) · Jx 7→EX
η (x,h′) +

(
JEX

η (x,·)

)−1

(h′) · Jx 7→ESx
η (x,h)

≡ A (x, h) + B (x, h)

Now, since EX
η (x, h′) is C1 in the joint variables, EX

η (x, ·) is a diffeomor-
phism, and h′ = Θ (x, h) is Lipschitz continuous, we conclude that A (x, h)
is h-continuous, uniformly with respect to x.

The same is true for the term
(
JEX

η (x,·)

)−1

(h′) appearing in B (x, h). It

remains to check that h 7→ Jx 7→ESx
η (x,h) is continuous at least at h = 0. This

can be seen as follows:

∂

∂x
ESx

η (x, h) =
∂

∂x

[
ESx

η (y, h)
]

/y=x
+

∂

∂x

[
ESz

η (x, h)
]

/z=x
.

The first term is continuous at h = 0, by Lemma 7.11, while the second term
is continuous in h, because for fixed z the vector fields Sz are smooth, and
ESz

η (x, h) is a C1 function in the joint variables (x, h) . This ends the proof.

We can come, at last, to the
Proof of Proposition 7.8. We have to prove that the map ESx

η (x, h) is
X-controllable with hitting time T ≤ αρ. Actually, it is enough to prove X-
controllability with a hitting time T ≤ cρ (with c possibly larger than α),
because if condition (1) in the statement of Theorem 7.4 holds for some α then
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it still holds for a larger one, and if we replace α with a larger one we can
still fulfil condition (iii) replacing β with a larger one. We have therefore to
prove that there exists a function γ : Ωη ×Q× [0, T ] → R

p satisfying conditions
(C1)-(C2’), which we will recall here.

(C1) For any (x, h) ∈ Ωη × Qη (ρ) , t 7→ γ (x, h, t) is a X-subunit path
connecting x and ESx

η (x, h) , that is

{
d
dtγ (x, h, t) =

∑
aj (t) (Xj)γ(x,h,t) for suitable aj with

∑
|aj (t)|2 ≤ 1

γ (x, h, 0) = x; γ (x, h, T (x, h)) = ESx

η (x, h)

for a suitable T (x, h) ≤ T.
To prove this, let y = ESx

η (x, h) for some h ∈ Qη (ρ) . By Lemma 7.10 (and
its proof),

y = EX
η (x, h′) for some h′ ∈ Qη (cρ) , namely

h′ = Θ (x, h) ≡ EX
η (x, ·)−1

ESx

η (x, h) .

(Note that this Θ (x, h) is the one studied in Lemma 7.12). We can build
an admissible curve t 7→ γ̃ (x, h′, t) connecting x to y = EX

η (x, h′) in time
T ≤ c ‖h′‖η ≤ cρ moving along the curve which define the quasiexponential

map EX
η (x, ·) , as suggested in [33, pp.336-7]: namely, if

EX
η (x, h′) =

M∏

j=1

exp

(∣∣∣h′
kj

∣∣∣
1/lkj

σjXrj

)
(x)

then one easily checks that any map

(x, h′) 7→ exp

(∣∣∣h′
kj

∣∣∣
1/lkj

σjXrj

)
(x)

is X-controllable with hitting time
∣∣∣h′

kj

∣∣∣
1/lkj

; by composition, Lemma 4.2 in

[33] implies that EX
η (x, h′) is X-controllable with hitting time

T ≤ c sup
h∈Q

‖h‖η ≤ cρ,

and in particular there exists a curve γ̃ with the properties required by (C1).
Next, we have to check:

(C2’) For any (h, t) ∈ Q × [0, T ] , x 7→ γ (x, h, t) is a one-to-one bilipschitz
map having jacobian determinant bounded away from zero, i.e.

b ≡ inf
O×Q×[0,T ]

∣∣∣∣
∂γ

∂x

∣∣∣∣ > 0.

Namely, we have to compute the x-derivative of the composed function

γ (x, h, t) = γ̃ (x, Θ (x, h) , t) ,
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that is

∂

∂x
γ (x, h, t) =

∂γ̃

∂x
(x, Θ (x, h) , t)+

∂γ̃

∂h′
(x, Θ (x, h) , t)· ∂

∂x

[
EX

η (x, ·)−1
ESx

η (x, h)
]
.

(7.15)
First, let us recall that Θ (x, 0) = 0 and x 7→ γ̃ (x, h′, t) has the smoothness

of x 7→ EX
η (x, h′) hence is Cr−1,1. Moreover, γ̃ (x, 0, t) = x, hence

∂γ̃

∂x
(x, 0, t) = I

(identity matrix) and, by continuity, ∂eγ
∂x (x, Θ (x, h) , t) is close to the identity

matrix for h small enough.
Second, we know that (x, h′) 7→ γ̃ (x, h′, t) has the smoothness of (x, h′) 7→

EX
η (x, h′) , hence is C1. Therefore

∂γ̃

∂h′
(x, Θ (x, h) , t) is bounded.

Finally, by Lemma 7.12
∣∣∣∣

∂

∂x

[
EX

η (x, ·)−1 ESx

η (x, h)
]∣∣∣∣ ≤ cω (h) → 0 as h → 0.

By (7.15), these facts imply that ∂γ
∂x is a small perturbation of the identity, for

small h.
Summarizing, the situation is the following:

γ (x1, h, t) − γ (x2, h, t) =

= [γ̃ (x1, Θ (x1, h) , t) − γ̃ (x2, Θ (x1, h) , t)] + [γ̃ (x2, Θ (x1, h) , t) − γ̃ (x2, Θ (x2, h) , t)]

≡ A + B.

Since, for small h′, the map x 7−→ γ̃ (x, h′, t) is a diffeomorphism,

|A| ≥ c |x1 − x2| .

On the other hand, by Lemma 7.12,

|B| ≤ |Θ (x1, h) − Θ (x2, h)| ≤ cω (h) |x1 − x2|

Hence for h small enough x 7−→ γ (x, h, t) is a bilipschitz map, with Jacobian de-
terminant bounded away from zero. Note that, asking h small enough amounts
to diminishing the constant r0 in Theorem 7.6, which is allowed, as we have
already noted. This completes the proof of Proposition 7.8, and therefore of
Theorem 7.2.

Remark 7.13 If we assume that our vector fields Xi’s only belong to Cr−1
(
Ω

)
,

instead of Cr−1,1 (Ω) , the theory developed in sections 2-5 allows to derive a
rougher version of Poincaré’s inequality. Let us sketch it here. For a fixed point
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x0 ∈ Ω′, let us consider the smooth approximating vector fields Sx0

i . Since these
are smooth Hörmander’s vector fields, they satisfy a Poincaré’s inequality

∫

B×B

|u (y) − u (x)| dydx ≤ cρ |B|
∫

λB

|Sx0u (y)| dy (7.16)

where B = BSx0

1 (x0, ρ); by Theorem 5.9, a similar inequality also holds with
B = BX

1 (x0, ρ) , and possibly a larger number λ. Now, let us recall that by
Proposition 3.1

Sx0

i = Xi +

n∑

j=1

cij (x) ∂xj with cij (x) = o
(
|x − x0|r−1

)
as x → x0.

Hence (7.16) rewrites as
∫

B×B

|u (y) − u (x)|dydx ≤ cρ |B|
∫

λB

|Xu (y)| dy + |B| o (ρr)

∫

λB

|∇u (y)| dy

(where ∇ is the Euclidean gradient), or
∫

B

|u (y) − uB (x)| dydx ≤ cρ

∫

λB

|Xu (y)|dy + o (ρr)

∫

λB

|∇u (y)| dy.

8 Applications

There is a large literature dealing with relations between Poincaré’s inequal-
ity and other results about both Sobolev spaces and solutions to second order
PDEs, both in the Euclidean (elliptic) context and in the subelliptic one. We re-
fer to Hajlasz-Koskela’s monograph [25] for a good exposition and a rich source
of further references on this area of research. Some of these results have been es-
tablished in great generality, as axiomatic theories. For instance, it is well-known
that, roughly speaking, the validity of the doubling condition and a Poincaré’s
inequality imply a Sobolev embedding. This fact has been proved, at differ-
ent levels of generality, by Saloff-Coste [49], Garofalo-Nhieu [23], Franchi-Lu-
Wheeden [21], Hajlasz-Koskela [25]. In turn, the doubling condition, Poincaré
and Sobolev inequalities allow to reply Moser’s iteration technique, and prove a
Harnack inequality and a Hölder continuity result for local solutions to (elliptic
or subelliptic) variational second order equations. In this section we want to
point out, for convenience of the reader, some precise statements of this kind,
which describe a few consequences of the results we have proved so far, which
can be easily derived from the aforementioned general theories, and constitute
new results, in our general setting.

8.1 Sobolev embedding and p-Poincaré’s inequality

Here we keep Assumptions (D) stated at the beginning of § 7. We start noting
that (7.2) implies, by Hölder’s inequality,

1

|B|

∫

B

|u (y) − uB| dy ≤ cρ

(
1

|λB|

∫

λB

|Xu (y)|p dy

)1/p

for any p > 1. (8.1)
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Then, applying Theorem 13.1 in [25] we have the following strong result:

Theorem 8.1 For any Ω′ ⋐ Ω, p ≥ 1, there exist c, r0 > 0, such that:
(i) (Sobolev inequality) There exists a constant k > 1 such that

(
1

|B|

∫

B

|ϕ (x)|kp
dx

)1/kp

≤ cρ

(
1

|B|

∫

B

|Xϕ (x)|p dx

)1/p

(8.2)

for any ϕ ∈ C∞
0 (B) , with B = B (x, ρ) , ρ ≤ r0, x ∈ Ω′, and the balls are taken

with respect to the distance dX,1.
(ii) (Poincaré’s p-p inequality)

(
1

|B|

∫

B

|ϕ (x) − ϕB|p dx

)1/p

≤ cρ

(
1

|B|

∫

B

|Xϕ (x)|p dx

)1/p

(8.3)

for any ϕ ∈ C∞ (B) , B as above.

Note that, quite surprisingly, in (8.3) a ball of the same radius appears
at both sides of the inequality; this fact, instead, is natural in (8.2), where the
function ϕ is assumed compactly supported in B. This theorem is proved in [25]
exploiting a set of assumptions which, in our context of nonsmooth Hörmander’s
vector fields, we have proved in the previous sections, namely:

(a) Poincaré’s inequality (Theorem 7.2 and in particular (8.1));
(b) the doubling condition for metric balls with respect to the distance

d1(5.10);
(c) the equivalence of the Euclidean topology with d1-topology, which follows

from Proposition 5.8.

8.2 Moser’s iteration for variational second order opera-

tors

Let us consider a linear second order variational operator of the kind

Lu ≡
n∑

i,j=1

X∗
i (aij (x)Xju) (8.4)

where X1, ..., Xn is our set of nonsmooth Hörmander’s vector fields, X∗
i denotes

the transposed operator of Xi, and {aij}n
i,j=1 is a symmetric uniformly positive

definite matrix of L∞ (Ω) functions:

λ |ξ|2 ≤
n∑

i,j=1

aij (x) ξiξj ≤ λ−1 |ξ|2

for some λ > 0, any ξ ∈ R
n, a.e. x ∈ Ω. We say that u is a local solution to the

equation Lu = 0 in Ω if

u ∈ W 1,2
X,loc (Ω) =

{
u ∈ L2

loc (Ω) : Xiu ∈ L2
loc (Ω) for i = 1, 2, ..., n

}
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and ∫

Ω

n∑

i,j=1

aijXiuXjϕdx = 0 for any ϕ ∈ C∞
0 (Ω) .

In this context, Theorem 8.1 (with p = 2) gives the tools to settle the classical
Moser’s iterative method, and prove the facts collected in the following:

Theorem 8.2 Let u be a local solution to Lu = 0 in Ω. Then:
(i) u is locally bounded, with

‖u‖L∞(B) ≤ c

(
1

|2B|

∫

2B

|u (x)|2 dx

)1/2

for any 2B ⊂ Ω, with c depending on the coefficients aij only through the number
λ.

(ii) If u is positive in Ω, then it satisfies a Harnack’s inequality:

sup
B

u ≤ c inf
B

u

for any 2B ⊂ Ω, with c depending on the coefficients aij only through the number
λ.

(iii) u is Hölder continuos (in the usual, Euclidean sense) of some exponent
α ∈ (0, 1) , on any subset Ω′ ⋐ Ω:

|u (x) − u (y)| ≤ c |x − y|α

for any x, y ∈ Ω′, with c, α depending on Ω′ and depending on the coefficients
aij only through the number λ, and c also depending on ‖u‖L2(Ω).

The above theorem follows, for instance, applying the general theory devel-
oped by Sawyer-Wheeden in [52] (see in particular Theorem 8 in [52]). To check
the assumptions of this theory one needs to exploit Theorem 8.1 and the facts
(b), (c) recalled in the previous subsection. Actually, the Hölder continuity re-
sult which follows from Theorem 8 in [52] is much more general than the one we
have stated in (iii): it holds for local solutions to a nonhomogeneous equation,
also involving lower order terms. With the terminology introduced in [52], one
can say that the operator L in (8.4) is Lq-subelliptic. We do not state this result
in its full generality for the sake of simplicity.

Clearly, the local Hölder continuity result can be applied also to local solu-
tions for nonlinear operators of the kind:

Pu =

n∑

i=1

X∗
i (aij (x, u (x))Xju) .

For smooth Hörmander’s vector fields, the results contained in Theorem 8.2
follow from Nagel-Stein-Wainger’s doubling condition and Jerison’s Poincaré
inequality (see [43], [28]). Analogous results, in a weighted context, have been
proved by Lu in [34].
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We also point out that operators (8.4) structured on nonsmooth Hörmander’s
vector fields can be seen also as particular instances of X-elliptic operators,
in the sense of Lanconelli-Kogoj [32], with the same consequences already de-
scribed.

9 Appendix: some known results about O.D.E.’s

1. Gronwall’s Lemma

We state the version of Gronwall’s Lemma that we use throughout this paper.
For a proof, see for instance [10, p.625].

Lemma 9.1 Let φ : [0, 1] → R be a nonnegative continuous function such that

φ (t) ≤ c

∫ t

0

φ (s) ds + K (9.1)

for any t ∈ [0, 1] and two positive constants c, K. Then there exists a constant
c1 > 0, only depending on c, such that

φ (t) ≤ c1K.

2. Existence results and uniformity matters

Theorem 9.2 (Carathéodory’s existence theorem) Let F (t, x) be a func-
tion defined for t ∈ (−T, T ) , x ∈ R

p, F continuous in x for fixed t and measur-
able in t for fixed x. Assume that

|F (t, x)| ≤ M (t)

with M ∈ L1 (a, b) for any [a, b] ⊂ (−T, T ) . Then, for every x0 ∈ R
p there exists

an absolutely continuous function φ : (−T, T ) → R
p solution to the problem

{
φ′ (t) = F (t, φ (t)) for a.e. t ∈ (−T, T )
φ (0) = x0

exists.

For the proof, see e.g. [51, p.140]. In the proof of Theorem 3.4 we apply this
theorem to

F (t, x) =
∑

|I|≤r

aI (t)
(
X[I]

)
x

where aI (·) are bounded measurable functions on [0, 1], and the vector fields Xi

are Cr−1
(
Ω

)
. Now, for any fixed Ω′ ⋐ Ω′′ ⋐ Ω, we can find a function F̃ (t, x)

satisfying the assumptions of the Carathéodory’s theorem and agreeeing with
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F (t, x) for x ∈ Ω′′. When x0 ∈ Ω′ and |aI (t)| ≤ δ|I| with δ small enough, there
exists a solution φ to

{
φ′ (t) = F̃ (t, φ (t)) for t ∈ [0, 1]
φ (0) = x0

such that φ (t) ∈ Ω′′ for t ∈ [0, 1] and therefore φ solves

{
φ′ (t) =

∑
|I|≤r aI (t)

(
X[I]

)
φ(t)

for t ∈ [0, 1]

φ (0) = x0.

Note that this δ depends on Ω and Ω′, but not on x0.

Theorem 9.3 (Cauchy’s existence and uniqueness theorem) Let X be a
Lipschitz continuous vector field defined in some domain Ω ⊂ R

p, and Ω′ ⋐ Ω.
There exists a number δ > 0, depending on X, Ω, Ω′, such that for every x0 ∈ Ω′,
a unique C1 solution φ : [−δ, δ] → Ω to the problem

{
φ′ (t) = Xφ(t) for t ∈ [−δ, δ]
φ (0) = x0

(9.2)

exists.

For the proof, see [44]. We stress the fact that the number δ can be chosen
independently of x0, at least when x0 ranges in a compact subset of Ω. This
uniformity property has been implicitly used in this paper.

3. Discussion about the dependence of the constants on the smooth
vector fields in the results proved by Nagel-Stein-Wainger [43]

Here we want to justify Claim 3.3 stated in §3. We have checked in detail this
Claim, revising the whole argument of [43]. Here we cannot repeat the whole
reasoning, but limit ourself to some remarks which stress the points to be kept
in mind, in order to understand the quantitative dependence of the constants.
What follows is intended to be read keeping at hand the paper [43]: we will use
their notations without any explanation.

1. We apply the construction of [43], Chapter II, §1, assuming that the vector
fields Yi are all the commutators X[I] of our smooth vector fields X0, X1, ..., Xn,
with |I| ≤ m. If Yi = X[I], we will set di = |I| . It is not difficult to see that, by
the Jacobi identity, for any multiindices I, J we can write

[
X[I], X[J]

]
=

∑

|K|=|I|+|J|

bK
IJX[K]

where bK
IJ are universal constants only depending on I, J, K (this fact is stated

for instance in [27]). Therefore we can write equation (1) of [43] as

[Yj , Yk] =
∑

dl≤dj+dk

cl
jk (x) Yl
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where the “functions” cl
jk (x) are actually universal constants.

2. Let us call “admissible function” any function which can be obtained,
starting from the coefficients of the smooth vector fields Xi, by linear combi-
nation and a finite number of operations of sums, products, and derivatives;
moreover, it is allowed to divide by the quantity

det (Yi1 , Yi2 , ..., YiN )

where Yi1 , Yi2 , ..., YiN is a fixed basis in an open subset ΩI ⊂ Ω. Clearly, admis-
sible functions belong to C∞ (ΩI) .

Let al
j (x) have the meaning explained in [43, p.116]. A key role is played

in [43] by the modules of functions Ap
s, defined as the C∞ (Ω) submodule of

C∞ (ΩI) generated by all the functions of the form

al1
j1
· al2

j2
· ...alk

jk

where the indices satisfy suitable conditions. Now, we claim that, keeping in
mind our remark 1 and revising the whole reasoning of Chapter II, §1 in [43],
one can check that all the arguments and statements of that section remain
true if we redefine the classes of functions Ap

s as the modules generated by the
functions al1

j1
·al2

j2
· ...alk

jk
taking as “scalars” not all the functions in C∞ (Ω) , but

only admissible functions.
This fact is crucial because, whenever we prove that a function belongs to a

class Ap
s, this implies a quantitative estimate in terms of the quantities allowed

by our Claim 3.3.
3. Revising the whole reasoning of the following sections of Chapter II in

[43], then, one can check that most of the arguments do not involve new forms
of dependence of the relevant constants on the vector fields Xi. The points
that require a more careful inspection are those involving the Baker-Campbell-
Hausdorff formula (henceforth, BCH formula), since this identity, in principle,
involves infinitely many derivatives. So, our next remark is devoted to BCH
formula.

4. We need the following finite BCH formula with a remainder:
for any Ω′ ⋐ Ω, given two positive integers k0, j0 there exist r0 > 0 and

C > 0 such that, if |s| , |t| < r0 then

exp (sX) exp (tY ) (x) = exp




∑

k+j≥1,k≤k0,j≤j0

sktjCk,j


 (x)+O

(
sk0+1

)
+O

(
tj0+1

)

(9.3)
for any x ∈ Ω′, where:

(i) Ck,j denotes a finite linear combination of commutators of X, Y , with
universal coefficients, where every commutator contains k times X and j times
Y ;

(ii) the remainders satisfy the estimates

∣∣O
(
sk0+1

)∣∣ ≤ Csk0+1,
∣∣O

(
tj0+1

)∣∣ ≤ Ctj0+1
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where the constants r0, C only depend on a finite number of Ck (Ω′) norms of
the coefficients of X, Y .

Although the above fact is probably well known, we have not been able
to find a precise reference for the last statement about the dependence of the
constants r0 and C. However, revising the proof of this formula given for instance
in [3], one can check that this is actually the case.

The identity (9.3) is applied several times in §§3-5 of Chapter II of [43],
taking as X, Y suitable commutators of our vector fields; thanks to the above
remark, the dependence of the constants satisfies also in this case the desired
control.
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Grushin type operators. Comm. Partial Differential Equations 19 (1994), no. 3-4, 523–

604.

[16] B. Franchi, E. Lanconelli: De Giorgi’s theorem for a class of strongly degenerate elliptic

equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 72 (1982), no. 5,

273–277 (1983).

[17] B. Franchi, E. Lanconelli: Une métrique associée à une classe d’opérateurs elliptiques
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Math. Pures Appl. (9) 64 (1985), no. 3, 237–256.

[21] B. Franchi, G. Lu, R. L. Wheeden: A relationship between Poincaré-type inequalities
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Università di Bergamo

Viale Marconi 5, 24044 Dalmine BG, ITALY

luca.brandolini@unibg.it

Dipartimento di Ingegneria dell’Informazione e Metodi Matematici
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