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Singular integrals in nonhomogeneous
spaces: L2 and Lp continuity

from Hölder estimates

Marco Bramanti

Abstract

We present a result of Lp continuity of singular integrals of Calde-
rón-Zygmund type in the context of bounded nonhomogeneous spaces,
well suited to be applied to problems of a priori estimates for partial
differential equations. First, an easy and selfcontained proof of L2

continuity is got by means of Cα continuity, thanks to an abstract
theorem of Krein. Then Lp continuity is derived adapting known
results by Nazarov-Treil-Volberg about singular integrals in nonho-
mogeneous spaces.

1. Introduction

The theory of singular integrals of Calderón-Zygmund type has been suc-
cessfully employed, since its very beginning in the mid 1950’s, to the study of
a-priori estimates for linear PDE’s (see for instance Calderón-Zygmund [4]).
Starting with the 1970’s, the generalization of the theory to the context of
spaces of homogeneous type, in the sense of Coifman-Weiss [7], has made pos-
sible the proof of a-priori estimates also for degenerate operators of Hörman-
der’s type (see Folland [12], Rothschild-Stein [21]). In that context, the proof
of L2 continuity for the relevant singular integral operator was provided by
means of the so-called almost orthogonality principle, a far-reaching idea,
originally due to Cotlar [8] and then adapted by Knapp-Stein [14], suitable
to a much broader application than the original Fourier transform technique,
which worked so well in the Euclidean context, but not in more general set-
tings. On the other hand, the part of the theory which deduces Lp continuity
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from L2 continuity (via weak (1, 1) estimate and interpolation), was accom-
plished in [6], [7] by a suitable adaptation of the original Calderón-Zygmund
construction, which is possible as soon as we have a quasidistance and a
doubling measure. Later, in the mid 1980’s, new deep advances were made
with the “T (1) theorem”, by David-Journé [9], and the “T (b) theorem”,
by David-Journé-Semmes [10]. These results made possible to prove the L2

continuity of singular integral operators under considerably weaker assump-
tions on the kernel. More precisely, it was the cancellation property of the
kernel which was expressed in a weaker sense, asking for instance -in the
first of the two quoted results- T (1) to belong to the space BMO, instead
of being bounded, as traditionally required. The theorems T (1) and T (b)
were also shown to hold in the general context of spaces of homogeneous
type (see Christ [5]). Once the L2 continuity was established, the exist-
ing machinery provided the extension to Lp continuity. In the late 1990’s
still another great step forward was done, with the works of Nazarov-Treil-
Volberg (see e.g. [18, 19, 20, 25]), Tolsa ([23, 24]) and other authors, who
showed that the doubling condition, which was considered the cornerstone of
any extension to abstract frameworks of the theory of singular integrals, was
not really necessary, but could be replaced by a less demanding condition.
One of the main motivations of the new theory was the solution of several
questions related to analytic capacity (see e.g. [25] for a discussion of these
issues) and, as far as we know, the results which hold in nonhomogeneous
spaces have not been applied yet to problems in PDE’s. However, there
are situations related to a-priori estimates for PDE’s, where removing the
doubling condition from the assumptions is useful. This paper is mainly
motivated by this idea.

For instance, in the study of degenerate operators built with Hörman-
der’s vector fields, the following ingredients are usually present: a bounded
domain Ω ⊂ Rn; a distance or quasidistance d, defined in Ω, adapted to
the differential operator; the Lebesgue measure. Usually, we know that the
Lebesgue measure is locally doubling with respect to the metric balls; this
means that, if we define

Br (x) = {y ∈ Ω : d (x, y) < r} ,

then for any Ω′ � Ω there exist positive constants c, r0 such that

(1.1) |B2r (x)| ≤ c |Br (x)| for any x ∈ Ω′, r ≤ r0

(a famous result of this kind is due to Nagel-Stein-Wainger [17]).
Clearly, this is not enough to say that (Ω, d, dx) or (Ω′, d, dx) are spaces

of homogeneous type: namely, in order to say that the doubling condition
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holds in (Ω, d, dx) one should know that (1.1) holds for any x ∈ Ω (and not
just in Ω′), while to say that it holds in (Ω′, d, dx) one should know that

|B2r (x) ∩ Ω′| ≤ c |Br (x) ∩ Ω′| for any x ∈ Ω′, r > 0.

But this condition requires some sort of regularity of the boundary of Ω′,
which can be hard to be proved also for domains which from the Euclidean
point of view are smooth. For instance, it has been proved in [2] that this
kind of regularity holds if d is the subelliptic distance induced by a system
of Hörmander’s vector fields and Ω′ is a metric ball, and in [1] the analo-
gous “parabolic version” of this result has been proved. However, there are
still more general situations where a geometric regularity property of this
kind seems difficult to be proved; hence in this context it is quite natural
to apply the ideas of the theory of “Calderón-Zygmund operators in non-
homogeneous spaces”. Namely, the results proved in this paper have been
recently applied in [3] to prove some new local and global Lp estimates in Rn

for a class of Ornstein-Uhlenbeck degenerate operators for which the natu-
ral quasidistance does not allow to check the doubling condition on bounded
domains.

Like in the classical case, also in the nondoubling context the theory of
Calderón-Zygmund operators proceeds in two steps:

1) the proof of L2 continuity for an operator with kernel satisfying stan-
dard estimates plus some kind of cancellation property;

2) the proof of weak (1, 1) continuity for an operator which is continuous
on L2, with kernel satisfying standard estimates.

In the already quoted papers by Nazarov-Treil-Volberg and by Tolsa, the
two steps have been performed at different levels of generality: in step (1)
the space is usually Rn (or just R2) with the Euclidean distance, while for
step (2) they consider a separable metric space (X, d). In both cases, the
measure usually satisfies the dimensional bound

μ (Br (x)) ≤ crn

for some positive constants c, n, but can be nondoubling. The cancellation
property considered in step (1) is usually very weak, inspired to the theorems
T (1), T (b) or variants of them.

In contrast with this setting, in the applications to PDE’s that we have
in mind it is essential to prove L2 (and therefore Lp) estimates in a bounded
space endowed with a general quasidistance and a possibly nondoubling mea-
sure (satisfying the above “dimensional bound”); on the other hand, one can
usually rely on some strong (and more classical) kind of cancellation prop-
erty, which should make some arguments much simpler. As we shall see,
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the cancellation property we assume to prove L2 continuity amounts to the
boundedness of T (1) and T ∗ (1), plus the requirement that T (1)−T ∗ (1) be
Hölder continuous.

Therefore the existing theories, especially in the L2 case, are not well
suited to this situation. Our idea is to get a new proof of L2 (and Lp) con-
tinuity for a Calderón-Zygmund operator, with the aforementioned features
(see Theorem 3 in section 2 for the exact statement of our main result). To
accomplish this goal, our strategy is the following:

i) thanks to the cancellation property we assume, it is not difficult to
prove, also in the nondoubling context and for any quasidistance, that the
singular integral operator (or a suitable variant of this) is continuous on
Hölder spaces Cα (X), where X is our nonhomogeneous space (section 3);

ii) an abstract argument originally due to Krein [15] then allows to deduce
the continuity of the singular integral operator on L2 (X) (section 4); this
idea has been applied, in the doubling context, in [26] and [11] but we think
that this approach is not widely known.

iii) Once the L2 continuity is proved, the weak (1, 1) continuity result
proved by Nazarov-Treil-Volberg can be applied, with some minor adapta-
tion (section 5): one has to check that their arguments actually work for
any quasidistance, and not necessarily in a metric space. This immediately
implies the desired Lp estimate.

Acknowledgement. I wish to thank Joan Verdera who carefully read the
preprint and made valuable comments.

2. Basic definitions and statement of the main result

Let X be a set. A function d : X × X → R is called a quasidistance on X
if there exists a constant cd � 1 such that for any x, y, z ∈ X:

d (x, y) � 0 and d (x, y) = 0 ⇔ x = y;

d (x, y) = d (y, x) ;(2.1)

d (x, y) � cd (d (x, z) + d (z, y)) .(2.2)

We will say that two functions d, d′ : X × X → R are equivalent, and
we will write d � d′, if there exist two positive constants c1, c2 such that
c1d

′ (x, y) � d (x, y) � c2d
′ (x, y) for any x, y ∈ X.

We will say that d is a quasisymmetric quasidistance if axiom (2.1) is
replaced by the weaker

d (x, y) ≤ cdd (y, x) .

If d is a quasisymmetric quasidistance, then

d∗ (x, y) = d (x, y) + d (y, x)
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is a quasidistance, equivalent to d; d∗ will be called the symmetrized qua-
sidistance of d.

For r > 0, let Br (x) = {y ∈ X : d (x, y) < r}. These “balls” induce a
topology. With respect to this topology, the balls Br (x) need not be open.
Also, note that the property of openness of d-balls may not be conserved
replacing d with an equivalent quasisymmetric quasidistance, while the topo-
logy itself remains the same.

Definition 1 We will say that (X, d, μ, k) is a nonhomogeneous space with
Calderón-Zygmund kernel k if:

1. (X, d) is a set endowed with a quasisymmetric quasidistance d, such
that the d-balls are open with respect to the topology induced by d;

2. μ is a positive regular Borel measure on X (with respect to the topology
induced by d), and there exist two positive constants A, n such that:

(2.3) μ (B (x, r)) ≤ Arn for any x ∈ X;

3. k (x, y) is a real valued measurable kernel defined in X ×X, and there
exists a positive constant β such that:

|k (x, y)| ≤ A

d (x, y)n for any x, y ∈ X;(2.4)

|k (x, y) − k (x0, y)| ≤ A
d (x0, x)β

d (x0, y)n+β
(2.5)

for any x0, x, y∈X with d(x0, y)≥Ad(x0, x), where n, A are as in (2.3).

Properties (2.4)–(2.5) are called “standard estimates” for k. We stress
the fact that (2.3) weakens the standard doubling condition, required in the
definition of space of homogeneous type, given by Coifman-Weiss in [7].

Remark 2 (i) If assumptions (2.3), (2.4), (2.5) hold for d, they still hold
with respect to any equivalent d′ (with the constant A possibly replaced
by a different A′, and the same n, β).

(ii) If assumptions (2.3), (2.4), (2.5) hold for some A > 1, then they hold
for any A′ > A. We can then assume A large enough, so that the con-
dition d (x0, y) � Ad (x0, x) appearing in (2.5) implies (by the quasitri-
angle inequality) that d (x0, y) � d (x, y). We will use systematically
this equivalence.
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(iii) Conditions (2.3) and (2.4) immediately imply that for any fixed c1, c2 >0,

(2.6)

∫
c1r<d(x,y)<c2r

|k (x, y)| dμ (y) � A2

(
c2

c1

)n

for any r > 0, x ∈ X.

(iv) Condition (2.3) implies that the measure μ is nonatomic (μ ({x}) = 0
for any x ∈ X); moreover, if X is bounded, then μ is finite.

(v) If X is bounded, as soon as we know that (2.3) holds for any r ≤ r0,
and some fixed r0, we can conclude it holds for any r > 0.

(vi) Since the d-balls are open, the family of balls {B (x, r) , r > 0, r ∈ Q}
is a neighborhood basis of x; therefore, X is first countable.

We now state our main result:

Theorem 3 Let (X, d, μ, k) be a bounded and separable nonhomogeneous
space with Calderón-Zygmund kernel k. Also, assume that

(i) k∗ (x, y) ≡ k (y, x) satisfies (2.5);

(ii) there exists a constant B > 0 such that

(2.7)

∣∣∣∣
∫

d′(x,y)>r

k (x, y) dμ (y)

∣∣∣∣ +

∣∣∣∣
∫

d′(x,y)>r

k∗ (x, y) dμ (y)

∣∣∣∣ � B

for any r > 0, x ∈ X, where d′ is any quasisymmetric quasidistance on X,
equivalent to d, and fixed once and for all.

(iii) for a.e. x ∈ X, the limits

h(x) ≡ lim
r→0

∫
d′(x,y)>r

k (x, y) dμ (y) ; h∗(x) ≡ lim
r→0

∫
d′(x,y)>r

k∗ (x, y) dμ (y)

exist. Moreover
h − h∗ ∈ Cγ (X)

for some γ > 0 (see Definition 4 below).

Then the operator

Tf (x) ≡ lim
ε→0

Tεf (x) ≡ lim
ε→0

∫
d′(x,y)>ε

k (x, y) f (y) dμ (y)

is well defined for any f ∈ L1 (X) , and

‖Tf‖Lp(X) ≤ cp ‖f‖Lp(X) for any p ∈ (1,∞) ;

moreover, T is weakly (1, 1) continuous. The constant cp only depends on all
the constants implicitly involved in the assumptions: p, cd,A, B, n,β,diam(X)
and |h − h∗|Cγ(X).
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3. Singular integrals on Hölder spaces

In this section we will always assume that (X, d, μ, k) is a nonhomogeneous
space with Calderón-Zygmund kernel k (see Definition 1). Any other as-
sumption will be explicitly required when needed.

Definition 4 (Hölder spaces) For any α > 0, u : X → R, let:

|u|Cα(X) = sup

{ |u (x) − u (y)|
d (x, y)α : x, y ∈ X, x = y

}
‖u‖Cα(X) = |u|Cα(X) + sup

X
|u|

Cα (X) =
{

u : X → R : ‖u‖Cα(X) < ∞
}

.

If X is unbounded, we will also define Cα
0 (X) as the space of Cα (X) func-

tions with bounded support.

A basic result proved by Maćıas-Segovia (see [16, Theor. 2]) states that:

Proposition 5 Let d be any quasidistance on a set X. Then there exists
another quasidistance d̃ on X, equivalent to d, a constant c > 0 and an expo-
nent α0 ∈ (0, 1] such that for every r > 0, x, y, z ∈ X with d̃(x, z) < r,

d̃(y, z) < r,

(3.1)
∣∣ d̃ (x, z) − d̃ (y, z)

∣∣ � cd̃ (x, y)α0 r1−α0

Remark 6 If d is a quasisymmetric quasidistance, this proposition can be
applied to d∗, and says that the function x �−→ d̃ (x, z) (for z fixed) is locally

Hölder continuous (with respect to d̃ and therefore also to d∗ and d). This
allows to prove that if μ is any positive regular Borel measure defined on X,
then

Cα
0 (X) (or Cα(X) if X is bounded) is dense in Lp(X, μ)

for any p ∈ [1,∞) and any α � α0 (with α0 as in (3.1)). A detailed proof of
this fact can be found in [26, Lemma 2.3].

Let us turn now to the study of the action of singular integrals on Hölder
spaces Cα (X). This study is performed both for its own interest, and for
its application to the proof of L2 continuity (which will be performed in the
next section).

Theorem 7 Let (X, d, μ, k) be a nonhomogeneous space with Calderón-Zyg-
mund kernel k. Moreover, assume that either for some R > 0 the kernel
k (x, y) vanishes for d (x, y) > R, or X is bounded with diam(X) = R.
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(a) For any f ∈ Cα (X) , let

T̂ f (x) =

∫
k (x, y) [f (y) − f (x)] dμ (y)

Tεf (x) =

∫
d′(x,y)>ε

k (x, y) f (y) dμ (y)(3.2)

where d′ is any quasisymmetric quasidistance on X, equivalent to d, and fixed
once and for all. Then the integrals defining T̂ f (x) , Tεf (x) are absolutely
convergent for any f ∈ Cα (X) , α > 0, x ∈ X, ε > 0.

(b) Assume there exists a constant B > 0 such that

(3.3)
∣∣∣ ∫

d′(x,y)>r

k (x, y) dμ (y)
∣∣∣ � B

for any r > 0, x ∈ X. Then the operator T̂ is continuous on Cα (X) for any
α < β (β being the exponent in (2.5)) more precisely:∣∣T̂ f

∣∣
Cα(X)

� c |f |Cα(X) ,
∥∥T̂ f

∥∥
∞ � cRα |f |Cα(X)

where R is the number appearing in the assumption, and c depends on
A, B, cd, n, α, β.

(c) Assume now that X is bounded and “T (1) ∈ Cγ (X)”, that is: for
every x ∈ X there exists

h (x) ≡ lim
ε→0

∫
d′(x,y)>ε

k (x, y) dμ (y)

where d′ is the same quasidistance appearing in (3.2), and

(3.4) h ∈ Cγ (X) for some γ > 0.

Then for every α such that α < β, α ≤ γ, every f ∈ Cα (X) and x ∈ X
the following limit exists:

Tf (x) ≡ P.V.

∫
X

k (x, y) f (y)dμ (y) = lim
ε→0

Tεf (x)

and the operator T is continuous on Cα (X) ; more precisely:

(3.5) ‖Tf‖Cα(X) � c ‖f‖Cα(X)

where c depends on A, B, cd, n, α,β, γ, ‖h‖Cγ(X) and R = diam(X). If X
is unbounded (but k (x, y) vanishes for d (x, y)>R), the conclusion remains
true provided γ = α.
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Remark 8 (i) Note that (3.4) is obviously necessary, in order for T to
be continuous on Cα (X) , since the constant 1 belongs to Cα (X). How-

ever, (3.4) is not required to prove the Cα (X) continuity of T̂ . Point (c)
in the above theorem is stated for its own interest, but will not be used to
prove the L2 continuity of T .

(ii) In some applications of the abstract theory of singular integrals it is
useful to switch from one quasidistance to another one, having different good
properties. In particular, in the definition of principal value of a singular
integral, the small region around the pole which is removed and shrunk needs
not to be a ball with respect to the original quasidistance. Note that, unlike
all the other assumptions on the kernel, condition (3.4) is not generally
preserved replacing the quasidistance d′ with an equivalent d′′. Hence, once
we have checked all the other assumptions, we can look for a good equivalent
quasidistance which satisfies also (3.4). An instance where this fact is useful
occurs in [1] (in a doubling context).

A result similar to Theorem 7 has been proved in [26] (see also [1]) as-
suming the doubling condition, the symmetry of the quasidistance, and stan-
dard estimates on the kernel involving the function |B (x, d (x, y))| instead
of d (x, y)n (moreover, in [26] a slightly different definition of Cα is given).

To prove the theorem, let us start noting that assumption (2.3) implies,
by a standard computation, the following:

Lemma 9 For any β > 0 there exists a constant c = A2n

1−2−β such that

∫
d(x,y)<r

d (x, y)β

d (x, y)n dμ (y) � crβ ;

∫
d(x,y)>r

d (x, y)−β

d (x, y)n dμ (y) � cr−β.

Proof.∫
d(x,y)<r

d (x, y)β

d (x, y)n dμ (y) =
∞∑

k=0

∫
r

2k+1 ≤d(x,y)< r

2k

d (x, y)β

d (x, y)n dμ (y)

≤
∞∑

k=0

( r

2k

)β

· μ
(
B

(
x, r

2k

))(
r

2k+1

)n

by (2.3)

≤
∞∑

k=0

( r

2k

)β

· A
(

r
2k

)n(
r

2k+1

)n = 2nArβ
∞∑

k=0

1

2kβ
=

A2n

1 − 2−β
· rβ.

Analogously one proves the other inequality. �
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Let us now come to the

Proof of Theorem 7. (a) By (2.4), for any f ∈ Cα (X) we have, for the
number R > 0 appearing in the assumption,∫

X

∣∣k(x, y)[f(y)−f(x)]
∣∣ dμ(y) ≤ A |f |α

∫
d(x,y)<R

d (x, y)α

d (x, y)n dμ (y)≤A |f |α cRα

by Lemma 9. Analogously, by (2.4) and (2.3),∫
d′(x,y)>ε

∣∣k(x, y)f(y)
∣∣dμ(y) ≤ A‖f‖∞

∫
ε<d′(x,y)<cR

dμ (y)

d (x, y)n ≤ A2‖f‖∞
c

εn
Rn.

(b) Let us write:

T̂ f (x) − T̂ f (x0) =

=

∫
X

k (x, y) [f (y) − f (x)] dμ (y) −
∫

X

k (x0, y) [f (y) − f (x0)] dμ (y)

=

∫
d(x0,y)�Ad(x0,x)

{
k (x, y) [f (y) − f (x)] − k (x0, y) [f (y) − f (x0)]

}
dμ (y)

+

∫
d(x0,y)<Ad(x0,x)

{
k (x, y) [f (y) − f (x)] − k (x0, y) [f (y) − f (x0)]

}
dμ (y)

≡ A1 + A2.

A1 =

∫
d(x0,y)�Ad(x0,x)

{
[k (x, y) − k (x0, y)] [f (y) − f (x0)]

}
dμ (y)

+ [f (x0) − f (x)]

∫
d(x0,y)�Ad(x0,x)

k (x, y)dμ (y)

≡ A11 + A12.

|A11| �
∫

d(x0,y)�Ad(x0,x)

A
d (x0, x)β

d (x0, y)n+β
|f |α d (x0, y)α dμ (y)

= c |f |α d (x0, x)β

∫
d(x0,y)�Ad(x0,x)

1

d (x0, y)n+β−α
dμ (y)

since α < β, by Lemma 9

� c |f |α d (x0, x)β d (x0, x)α−β = c |f |α d (x0, x)α .

As to the second term,

|A12| � |f |α d (x0, x)α

∣∣∣∣
∫

d(x0,y)�Ad(x0,x)

k (x, y) dμ (y)

∣∣∣∣ .
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By Remark 2, d (x0, y) � Ad (x0, x) ⇒ d (x, y) � cd (x0, x) for some c > 0.
Then∫

d(x0,y)�Ad(x0,x)

k (x, y) dμ (y) =

=

∫
d(x,y)�cd(x0,x)

k (x, y) dμ (y) −
∫

d(x0,y)<Ad(x0,x), d(x,y)�cd(x0,x)

k (x, y) dμ (y)

and, by (3.3) and (2.6),

|A12| � |f |α d (x0, x)α

{∣∣∣∣
∫

d(x,y)�cd(x0,x)

k (x, y) dμ (y)

∣∣∣∣ +

+

∫
d(x0,y)<Ad(x0,x), d(x,y)�cd(x0,x)

|k (x, y)| dμ (y)

}

� |f |α d (x0, x)α

{
c +

∫
cd(x0,x)�d(x,y)�c1d(x0,x)

|k (x, y)| dμ (y)

}
� c |f |α d (x0, x)α .

|A2| �
∫

d(x0,y)<Ad(x0,x)

|k (x, y)| |f (y) − f (x)| dμ (y)+

+

∫
d(x0,y)<Ad(x0,x)

|k (x0, y)| |f (y) − f (x0)| dμ (y) ≡ A21 + A22.

|A22| � A |f |α
∫

d(x0,y)<cd(x0,x)

d (x0, y)α

d (x0, y)n dμ (y)
by Lemma 9

� c |f |α d (x0, x)α .

Analogously, since d (x0, y) < Ad (x0, x) =⇒ d (x, y) < cd (x0, x)

|A21| �
∫

d(x,y)<cd(x0,x)

|k (x, y)| |f (y) − f (x)| dμ (y) � c |f |α d (x, x0)
α .

We have therefore proved that∣∣∣T̂ f (x) − T̂ f (x0)
∣∣∣ � c |f |α d (x, x0)

α .

On the other hand, we have already proved in point (a) that∣∣T̂ f (x)
∣∣ � c |f |α Rα

for some fixed R > 0, and this concludes the proof of (b).
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(c) Since

Tεf (x) =

∫
d′(x,y)>ε

k (x, y) f (y) dμ (y) =

=

∫
d′(x,y)>ε

k (x, y) [f (y) − f (x)] dμ (y) + f (x)

∫
d′(x,y)>ε

k (x, y)dμ (y)

we have, under the assumptions of (c), that

Tf (x) = lim
ε→0

Tεf (x) = T̂ f (x) + h (x) f (x) .

Then, by what we have already proved in (b), if we show that

(3.6) ‖hf‖α ≤ c ‖f‖α

then we will conclude

(3.7) ‖Tf‖α ≤ c ‖f‖α .

To show (3.6): if X is bounded, for any α ≤ γ (recalling that h ∈ Cγ (X))

|hf |α ≤ |h|α ‖f‖∞ + ‖h‖∞ |f |α ≤ |h|γ Rγ−α ‖f‖∞ + ‖h‖∞ |f |α
≤

(
|h|γ Rγ−α + ‖h‖∞

)
‖f‖α

hence

‖hf‖α ≤
(
|h|γ Rγ−α + 2 ‖h‖∞

)
‖f‖α .

If X is unbounded but h ∈ Cα (X) ,

|hf |α ≤ |h|α ‖f‖∞ + ‖h‖∞ |f |α ≤ 2 ‖h‖α ‖f‖α

and the same conclusion holds. Note that (3.7) holds with c depending on
A, B, n, cd, α, γ, R, ‖h‖γ. �

4. L2 continuity via continuity on Cα

The link between Theorem 7 and L2 continuity relies in the following ab-
stract theorem due to Krein [15]. Since its proof is really short and elegant,
we will reproduce it here below, for convenience of the reader, in a form
similar to that which can be found in [11].
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Theorem 10 Let H be a (real, for simplicity) Hilbert space and Y a linear
normed space for which the inclusion i : Y → H is well defined, continuous
and with dense range. Let T, T ∗ : Y → Y be two linear continuous operators
on Y such that

(Tx, y) = (x, T ∗y) for any x, y ∈ Y,

where (, ) denotes the scalar product in H. Then T and T ∗ extend to linear
continuous operators on H, with

‖T‖H→H , ‖T ∗‖H→H ≤ ‖T‖1/2
Y →Y · ‖T ∗‖1/2

Y →Y .

Proof. For any x ∈ Y

‖Tx‖2
H = (Tx, Tx) = (x, T ∗Tx) ≤ ‖x‖H ‖T ∗Tx‖H

hence

(4.1) ‖Tx‖H ≤ ‖x‖1/2
H ‖T ∗Tx‖1/2

H .

We now apply (4.1) with T replaced by T ∗T. Since (T ∗T )∗ = T ∗T we get

‖T ∗Tx‖H ≤ ‖x‖1/2
H

∥∥(T ∗T )2 x
∥∥1/2

H

which combined with (4.1) gives

(4.2) ‖Tx‖H ≤ ‖x‖1/2+1/4
H

∥∥(T ∗T )2 x
∥∥1/4

H
.

We then apply (4.2) with T replaced by (T ∗T )2 , and so on; iteration yields

‖Tx‖H ≤ ‖x‖1/2+1/4+···+1/2j

H

∥∥∥(T ∗T )2j−1

x
∥∥∥1/2j

H

≤ ‖x‖1/2+1/4+···+1/2j

H ‖i‖1/2j

Y →H

∥∥∥(T ∗T )2j−1

x
∥∥∥1/2j

Y

≤ ‖x‖1/2+1/4+···+1/2j

H ‖i‖1/2j

Y →H

∥∥∥(T ∗T )2j−1
∥∥∥1/2j

Y →Y
‖x‖1/2j

Y

≤ ‖x‖1/2+1/4+···+1/2j

H ‖i‖1/2j

Y →H ‖T ∗T‖2j−1/2j

Y →Y ‖x‖1/2j

Y .

For fixed x and j → +∞ we get

‖Tx‖H ≤ ‖x‖H ‖T ∗T‖1/2
Y →Y ≤ ‖x‖H ‖T ∗‖1/2

Y →Y ‖T‖1/2
Y →Y

which shows that T can be extended continuously to H, with

‖T‖H→H ≤ ‖T‖1/2
Y →Y · ‖T ∗‖1/2

Y →Y .

An analogous reasoning shows the same holds for T ∗. �
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We want to apply the above theorem to:

H = L2 (X) ; Y = Cα (X)

with X bounded and T our Calderón-Zygmund operator:

Theorem 11 Let (X, d, μ, k) be a bounded nonhomogeneous space with Cal-
derón-Zygmund kernel k. Also, assume that

(i) k∗ (x, y) ≡ k (y, x) satisfies (2.5);

(ii) condition (2.7) holds (with respect to possibly different, but equiva-
lent, quasisymmetric quasidistances);

(iii) for a.e. x ∈ X, the limits

h (x) ≡ lim
r→0

∫
d′(x,y)>r

k (x, y) dμ (y) ; h∗ (x) ≡ lim
r→0

∫
d′(x,y)>r

k∗ (x, y) dμ (y)

exist. Moreover
h − h∗ ∈ Cγ (X)

for some γ > 0.

Then the operators

Tf (x) ≡ lim
ε→0

Tεf (x) ≡ lim
ε→0

∫
d′(x,y)>ε

k (x, y) f (y) dμ (y)

and T ∗ (analogously defined by k∗) can be extended to continuous operators
on L2 (X):

‖Tf‖L2(X) + ‖T ∗f‖L2(X) ≤ c ‖f‖L2(X)

with c depending on the constants A, B, cd, n, α, β, |h − h∗|Cγ(X) and
R = diam X, involved in our assumptions.

Remark 12 Even in some doubling contexts, the present proof of this the-
orem can be seen as an easier way to get L2 continuity of singular integrals.
Compare, for instance, with the proof of L2 continuity given in [14] or [22]
for singular integrals in homogeneous groups, using the almost orthogonality
principle.

Proof. Let us write, for any f ∈ Cα,

Tεf (x) =

∫
d′(x,y)>ε

k (x, y) f (y) dμ (y)

=

∫
d′(x,y)>ε

k (x, y) [f (y) − f (x)] dμ (y) + f (x)

∫
d′(x,y)>ε

k (x, y)dμ (y) ;
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hence, by assumption (iii), there exists

Tf (x) = lim
ε→0

Tεf (x) = T̂ f (x) + f (x) h (x)

with T̂ as in Theorem 7 and h ∈ L∞ (X) by assumption (ii). Hence

(4.3) ‖Tf‖L2(X) ≤
∥∥T̂ f

∥∥
L2(X)

+ ‖h‖L∞(X) ‖f‖L2(X) .

On the other hand, under our assumptions we can apply Theorem 7 to the
operator T̂ , concluding its continuity on Cα (X) for α small enough. In order

to apply Theorem 10, we also need to check Cα (X) continuity of T̂ ∗. An
easy computation shows that

T̂ ∗f (x) = T̂ ∗f (x) + f (x) [h∗ (x) − h (x)] .

Since k∗ satisfies the same assumptions as k, again Theorem 7 implies that T̂ ∗

is Cα (X) continuous for α small enough and, since h − h∗ ∈ Cγ (X) for

some positive γ, the same is true for T̂ ∗. Moreover, for α small enough
the inclusion of Cα (X) in L2 (X) is continuous and with dense range (see

Remark 6), hence by Theorem 10 the operators T̂ and T̂ ∗ are continuous
on L2 (X), and by (4.3) the same is true for T, and therefore for T ∗. �

5. Lp continuity

Once we have established the L2 continuity of T and T ∗, we can apply a
general result proved by Nazarov-Treil-Volberg in the context of nonhomo-
geneous space, and deduce the weak (1, 1) continuity of T , and therefore,
via interpolation and duality, the continuity on Lp for 1 < p < ∞, that is
Theorem 3.

Let us first state the main result proved in [18]:

Theorem 13 Let (X, d) be a separable metric space, let μ be a nonnegative
Borel measure on X, and k : X × X → C be a kernel such that (2.3), (2.4)
and (2.5) hold, and (2.5) is satisfied also by k∗. Assume that T : L2 (X) →
L2 (X) is a linear continuous operator such that

Tf (x) =

∫
X

k (x, y) f (y)dμ (y) for any f ∈ L2 (X) , x /∈ sprtf.

Then for any p ∈ (1,∞) , the operator T is bounded on Lp (X) , in the sense
that

‖Tf‖Lp ≤ C ‖f‖Lp for any f ∈ L2 (X) ∩ Lp (X) .

Moreover, T is weakly (1, 1) continuous.
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We are going to prove that the same conclusions of the above theorem
hold under the assumptions of our Theorem 3 which, in turn, are exactly the
same of Theorem 11, plus the separability of (X, d) , a technical assumption
which we will need.

Proof of Theorem 3. Revising carefully the proof of Theorem 13 given
in [18, pp. 469-479], one can check that it actually holds just assuming d
a quasisymmetric quasidistance. In the following we shall point out some
remarks which should convince of this fact anybody who has read the afore-
mentioned proof.

1. First of all, it is not restrictive to assume that d is symmetric. Other-
wise, we can consider the symmetrized quasidistance d∗ and note that both
the assumptions and the conclusion of the theorem are preserved replacing d
with an equivalent d∗.

2. For any quasidistance d, the following “engulfing property” holds:
there exists C > 1 such that

B (x, r) ∩ B (y, r) = ∅ =⇒ B (y, r) ⊂ B (x, Cr)

for any x, y ∈ X, r > 0. The constant C depends on the constant cd in
the quasitriangle inequality of d. If d is a distance, then C = 3; if d is a
quasidistance, all the arguments in [18, pp. 469-479] (Vitali covering lemma,

the definition of the maximal function M̃, and so on) must (and actually
can) be rewritten with the constant 3 replaced by this C.

3. Whitney’s decomposition is a key point in the proof in [18], where the
assumption that (X, d) is a separable metric space is explicitly used. So,
let us show how the argument in [18, p. 478] can be modified in our case.
We shall make use of the Withney decomposition proved for a quasidistance
in [22, Lemma 2, pp. 15-16].

Lemma 14 Let (X, d) be as in Definition 1, and let X be separable. Given
an open set G ⊂ X with nonvoid complement Gc, there exists a sequence of
balls {Bi} such that

(a) the Bi’s are pairwise disjoint;

(b) ∪iB
∗
i = G, where B∗

i = B (xi, c
∗ri) if Bi = B (xi, ri) ;

(c) B∗∗
i ∩ Gc = ∅ for each i, where B∗

i = B (xi, c
∗∗ri) if Bi = B (xi, ri) .

Here c∗, c∗∗ are constants > 1 depending on the quasidistance d. More
precisely,

B∗
i = B

(
xi,

δ (xi)

2

)
where δ (xi) =dist(xi, G

c).
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Moreover, there exists a collection {Qi} of Borel sets (“cubes”) such that:

(a’) the Qi’s are pairwise disjoint;

(b’) Bi ⊂ Qi ⊂ B∗
i ;

(c’) ∪iQi = G.

By the way, we note that the separability of X is not explicitly asked
in [22] because there the context is that of subsets of Rn. However all
the arguments hold in an abstract context; the assumption of separability
implies that (X, d) has a countable basis (since (X, d) is first-countable, see
Remark 2, (vi)), and therefore, by Lindelöf’s Theorem, allows to extract a
countable covering from any open covering of G, a fact which is implicitly
used in the proof of this Lemma in [22].

With the notation of [18, p. 14], we now apply this Lemma to the open set

G = {x ∈ X : |f (x)| > t}

and set:

fi = f · χQi
;

αi =

∫
X

fidμ =

∫
Qi

fdμ;

xi = the center of Bi;

νN =
N∑

i=1

αiδxi
;

fN =

N∑
i=1

fi

(where δxi
stands for the Dirac measure concentrated at xi). Then we can

bound:

∫
X\G

∣∣TfN − TνN

∣∣ dμ ≤
N∑

i=1

∫
X\G

|T [fidμ − αiδxi
]| dμ.

Next, we note that the measure μi = fidμ−αiδxi
is supported in Qi ⊂ B∗

i =

B
(
xi,

δ(xi)
2

)
, μi (X) = 0, and

N∑
i=1

∫
X\G

|Tμi| dμ ≤
N∑

i=1

∫
X\B(xi,δ(xi))

|Tμi| dμ.



364 M. Bramanti

Then we can apply Lemma 3.4 in [18, p. 8] to assure that∫
X\B(xi,δ(xi))

|Tμi| dμ ≤ c ‖μi‖ = c |αi| ,

so that ∫
X\G

∣∣TfN − TνN

∣∣ dμ ≤ c
N∑

i=1

|αi| ≤ c ‖f‖1 .

This is the same conclusion proved in [18] under the assumption that (X, d)
is a separable metric space. Hence the reasoning in [18] can be repeated for
any quasidistance, and the proof of Theorem 3 is completed.

Note added in proof. After the acceptance of this paper, Eduardo Gatto
has pointed out to my attention his recent paper [13], which contains results
partially overlapping with those in the present paper. I thank him for this
communication.
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