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0. INTRODUCTION

 Let  be a homogeneous space, the fractional integral operator of exponent  definedÐ Ñ − Ð ÑX,d, I  0,1. !!

by

I f x   k x,y f y d y! !Ð Ñ œ Ð Ñ Ð Ñ Ð Ñ'
X x\Ö × .

with . In this paper we study the commutator k x,y B x,d x,y!
!Ð Ñ œ Ð Ð Ð ÑÑÑ. �"

C I ,a f   a I f  I af ,Ò ÓÐ Ñ œ † � Ð Ñ! ! !

where , and we prove that, under a suitable geometric assumption on , it satisfies the -a BMO X X,d− Ð Ñ Ð Ñ _:

_; estimate

² C I ,a f   c a fÒ ÓÐ Ñ ² Ÿ ² ² ² ²! ; ‡ :

for , where  is the  seminorm and  We actually prove ap 1, ,     BMO c c ,p,X .− Ð Ñ œ � œ Ð Ñ1 1 1
q p!

! !² † ² ‡

stronger result which improves known results even in the euclidean case; namely we prove that the above

estimate holds for the operator  defined byC!
a

C f x  I a x a f x .! !
aÐ ÑÐ Ñ œ ± Ð Ñ � Ð † Ñ ± Ð † Ñ Ð ÑŠ ‹

This in particular implies that the estimate holds if in the definition of  we replace the fractional integralI!
kernel   by any equivalent one.k!

1. DEFINITIONS AND STATEMENT OF RESULTS

 Let  be a nonempty set. A function  is called if:X d:X X 0,  quasidistance ‚ Ä Ò _Ñ
i   d x,y   0  x yÑ Ð Ñ œ Í œ ;

ii  d x,y   d y,xÑ Ð Ñ œ Ð Ñ;
iii  c 1 x, y, z XÑ   −there exists a constant such that for every .

d x,y   c d x,z d z,y .Ð Ñ Ÿ Ò Ð Ñ � Ð ÑÓ. (1.1)

If is a set endowed with a quasidistance, the "balls" :  (for ÐX,d  B x B x,r y X  d x,y r x XÑ Ð Ñ ´ Ð Ñ œ − Ð Ñ � −< š ›
and ) always induce a topology in .r 0 X�
 Among the different definitions of homogeneous space that appear in the literature, here we use the

one in [CW1], [MS], [Bu]. We say that  is a  if:ÐX,d, homogeneous space.Ñ
i  X dÑ is a set endowed with a quasidistance , such that the balls are open sets in the topology induced by

d (in particular, they form a base);

ii X doubling conditionÑ  is a positive Borel measure on , satisfying the :.

0  B x   c B x  � Ð Ð ÑÑ Ÿ † Ð Ð ÑÑ � _. .#< <. (1.2)

for every some constant x X, r 0, c 1.− � �.

 For any set! − Ð Ñ0,1 , 

k x,y   B x y B x;y B x, d x,y!
!Ð Ñ œ Ð Ð ÑÑ Ð Ñ œ Ð Ð ÑÑ. ;     where   1.3�" Ð Ñ

and define the fractional integral operator

I f x   k x,y f y d y! !Ð Ñ œ Ð Ñ Ð Ñ Ð Ñ'
X x\Ö × . Ð Ñ1.4

for any measurable function  defined on f X.

 Fractional integrals on homogeneous spaces have been studied first by Gatto and Vagi (see [GV1],

[GV2]), who proved in this context results analogous to those which hold in the euclidean case (X ,œ ‘8
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k x,y x y!
!Ð Ñ œ ± � ± 8Ð �"Ñ ). The result which is most important to us, although stated in [GV2] with more

restrictive hypotheses on , can be restated as follows (in view of [MS]):X

Theorem 1.1. (Gatto and Vagi).

Let (So . Then there exists a constant! !− Ð Ñ − Ð Ñ œ � � � � �_0,1 , p 1, ,     . 1 p q1 1 1
q p!

Ñ

c c c ,c , ,p  f Xœ Ð Ñ − Ð Ñ.
:

. ! _such that for every 

² ² Ÿ ² ²I f   c f! ; :. 1.5Ð Ñ

 This result has been recently extended by Sawyer and Wheeden (see [SW]), who proved some

weighted estimates for fractional integrals on (euclidean and) homogeneous spaces. Here we study the

commutator of the fractional integral operator  with a  function. In another paper (see [BC]) weI BMO!

study the commutator of singular integral operators of Calderon-Zygmund type, on homogeneous spaces.

We assume the reader is familiar with the definition and basic properties of  in the context ofBMO

homogeneous spaces (see [Bu]). For , define the commutatora BMO X− Ð Ñ

C I ,a f x   a x I f x   I af x  k x,y a x a y f y d y .Ò ÓÐ ÑÐ Ñ œ Ð Ñ † Ð Ñ � Ð ÑÐ Ñ œ Ð Ñ Ò Ð Ñ � Ð ÑÓ Ð Ñ Ð Ñ! ! ! !
'

X x\Ö × .

Also, set

C f x   k x,y a x a y f y d y .a X x
!

!Ð Ñ œ Ð Ñ ± Ð Ñ � Ð Ñ ± Ð Ñ Ð Ñ'
\Ö × .

 In order to state our main results, we need two more definitions.

Definition 1.2.  For every , set:x X−

R   inf R: B x   X r   sup r: B x xB V B <œ Ð Ñ œ œ Ð Ñ œ Ö ×  ;    š › š ›
(with the conventions sup 0, inf ).g œ g œ �_
Note that  if and only if is bounded;  if and only if , that is  is an "atom".R X r 0 x 0 xB B� �_ � Ö × �.

(This follows from results in [MS]).

Definition 1.3.  We say that  satisfies the Property (P) if there exists  such that for everyÐ Ñ − Ð ÑX,d m 0,1

x X r r , − − Ð Ñ, every number ,B
R

m
B

B x B x< 7<Ð Ñ Ð Ñ Á g\ . PÐ Ñ

 Throughout the paper, we will write  for a constant depending on the the numbers c X c , cÐ Ñ . .

appearing in (1.1)-(1.2) and in (P).m 

 Property P  requires that certain annuli be nonempty. Actually, it requires that for any empty annulusÐ Ñ
the ratio between the outer and inner radii is bounded. Note that if  is bounded or has atoms, there areX

always  empty annuli. Nevertheless, condition P  can still hold (see example A.1 in the ).some AppendixÐ Ñ
But condition (P) can fail to be true in some pathological cases (see example A.2).

 The following two theorems contain our main results.

Theorem 1.4.  Let  be a homogeneous space satisfying property (P),  as in Thm.1.1, i.e.Ð ÑX,d, , p, q. !

! ! !− Ð Ñ − Ð Ñ œ � − Ð Ñ œ Ð Ñ0,1 , p 1, ,     , a BMO X . c c X, ,p1 1 1
q p!

Then there exists a constant  such that for

every f X− Ð Ñ_:

² ² Ÿ ² ² ² ² ÐC f   c a f .a
!

; ‡ : 1.6Ñ

(  denotes the  seminorm).² † ² ‡ BMO

Theorem 1.5.  Under the same assumptions of Thm.1.4, we also have

² Ò ÓÐ Ñ ² Ÿ ² ² ² ² ÐC I ,a f   c a f .! ; ‡ : 1.7Ñ

Moreover, the same kind of estimate holds if the kernel  is replaced with any equivalent kernel  (thatk k
~

! !

is, such that  for some positive constants ).c k x,y k x,y c k x,y c , c
~

" # " #† Ð Ñ Ÿ Ð Ñ Ÿ † Ð Ñ! ! !

 Theorem 1.5 obviously follows from Theorem 1.4 and it generalizes to homogeneous spaces an

analogous result proved by Chanillo for fractional integrals in  (see [Cha]). Thm. 1.4 is a stronger result,‘8

which is new even in the euclidean case. Finally, we note that the second part of the statement of Thm. 1.5
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does not follow from the first part, without assuming Thm. 1.4. The interest of this fact is that fractional

integrals on homogeneous spaces may be actually defined by different (equivalent) kernels.

 Before closing this section we point out two results concerning the above definitions.

Lemma 1.6. If  is bounded, then for every  the numbers are equivalent:X x, y X R , R  − B C

1
4c.
R   R   4c R .C B . CŸ Ÿ

Proof. Observe that for every , . For fixed , let be a sequence of points such thaty X B y X x x  − Ð Ñ ´2RC 5

d x,x RÐ Ñ Ä5 B; then

R   lim d x,x   lim sup  c d x,y d y,x   4c R .B 5 . 5 . Cœ Ð Ñ Ÿ Ð Ñ � Ð Ñ Ÿ
5 Ä _ 5 Ä _

Š ‹
Interchanging the roles of  we obtain the reverse inequality.x, y �

Lemma 1.7.  If condition (P) holds for some , then it holds for any positive m 0,1 m m.− Ð Ñ �w

Proof. It is enough to show that (P) holds for (then by iteration it holds for any ). Form m m m m# w w� � �

x X r r , r B B B B r  r r− − Ð Ñ � ª Á g Ÿ � œ, let . If , then \ \  by (P). If , let , thenB < 7 < < 7<
wR R R R

m m m m m
mB B B B

w ww
w

r r R r . r r , B B . B B  w w w
B B B < 7< 7< 7 <�   �   − Ð Ñ Á g œR m R R

m m m
B B B

w

# w w w w. Also Therefore  and hence \  But and

B B  B B B B .< < < 7 < < 7<w w w w© ª Á gso that \ \ �

 The proof of Thm. 1.4 consists in two steps. The first one (§ 2) consists in showing that the estimate

on  follows from a suitable estimate on . This idea was suggested by Coifman-Rochberg-C f weighted I fa
!

!

Weiss in [CRW] as a possible "alternative proof" of their result about commutators of singular integrals in

‘8. The second step (§ 3), consists then in proving this weighted estimate. This will follow from the

weighted estimates of Sawyer-Wheeden (see Thm 3.1 and [SW]), modified in order to include our more

general geometric assumptions on the space .X

2. OUTLINE OF THE PROOF OF THM. 1.4.

 Observe, first of all, that it is enough to prove the theorem for  and , since for f 0 a a BMO  − −__

there exists a sequence such that  pointwise a.e. and for someÖ × § Ä ² ² Ÿ ² ²a  a a a c a  5 5 5 ‡ ‡
__

absolute constant ; therefore by Fatou's theorem:c

² ² Ÿ ² Ð ± ± Ñ ² Ÿ ² Ð ± ± Ñ ² Ÿ
Ä _

C f   C f   lim inf  C f  
k

+ +; ; ;
! ! !

a 5

Ÿ † ² ² ² ² Ÿ ² ² ² ²
Ä _

 c lim inf  a f   c a f .
k

5 ‡ : ‡ :

Claim 2.1. For , , leta z− −_ ‚_

b x exp Re z a xÐ Ñ œ Ð † Ð ÑÑ Ð Ñ2.1

and suppose we know that the operator satisfies for some , every  with , theI  0 z z! % ‚� − ±± � %

weighted estimate:

² ² Ÿ † ² ² ÐI f   c f! _ . _ .; ; : :Ð Ñ Ð Ñb d b d 2.2Ñ

with , and  as in Thm. 1.1. Thenc c X,p,q, , a p qœ Ð ² ² Ñ% ‡

² ² Ÿ ² ² ² ² ÐC f   c a f+ ; ‡ :
! 2.3Ñ

with c c X,p,q, .œ Ð Ñ%

Proof.  For , define:f 0 

T f x    e k x,y f y sgn a x a y d y .D ×
Ð Ð Ñ� Ð ÑÑÐ Ñ œ Ð Ñ Ð Ñ Ð Ð Ñ � Ð ÑÑ Ð Ñ Ð'

X x
z a x a y

\Ö ! . 2.4Ñ

Then

± Ð Ñ ± Ÿ Ð Ñ Ð Ñ Ð Ñ Ð Ñ Ð ÑT f x   b x k x,y f y b y d yD Ö ×
�"'

X x\ ! . Ð Ñ2.5

so that

² ² Ÿ ² Ð Ñ ² ŸT f   I b f   D ;
�"

Ð Ñ! _ .; ;b d (by (2.2))
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Ÿ † ² ² † ² ² Ð c b f c f�"
Ð Ñ :_ .: :b d   2.6œ Ñ

for , with ± ± � œ Ð ² ² Ñz c c X,p,q, , a .% % ‡

 Therefore   is a mapping from the disk    into the space of linearF: z T D z : zÈ œ Ö − ± ± � ×D % ‚ %

continuous operators  , . Let us show that  is analytic in Writing_ _ _Ð Ñ: ; F D .  %

   
T f x T f x

h
D
2 DÐ Ñ� Ð Ñ

œ

œ   ,'
X x

e 1
h

z a x a y
\Ö ×

� Ð Ð Ñ� Ð ÑÑŠ ‹   e k x,y f y sgn a x a y d y
h a x a yÐ Ð Ñ� Ð ÑÑ

!Ð Ñ Ð Ñ Ð Ð Ñ � Ð ÑÑ Ð Ñ.

since

± ± Ÿ ² ² � Ð Ñ Äe 1
h

h a x a yÐ Ð Ñ� Ð ÑÑ�
_   2 a   o 1    h 0as  ,

and since the integral defining  , by (2.6),  converges absolutely for a.e. , if , we get:T f x zD ± ± � %

d
dz X x

z a x a yT f x    e a x a y k x,y f y d yD ×
Ð Ð Ñ� Ð ÑÑÐ Ñ œ ± Ð Ñ � Ð Ñ ± Ð Ñ Ð Ñ Ð Ñ'

\Ö ! . Ð Ñ2.7

for ± ± �z .%

 Then by the Cauchy's integral formula we can write

¸d 1
dz 2 i wz 0 w

T f x
T f x         dwD œ ± ±œ

Ð Ñ
Ð Ñ œ

1
'

%

#

A
# . 2.8Ð Ñ

But the left hand side of (2.8) is exactly  , by (2.7), so we have:C f x!
a Ð Ñ

² ² Ÿ Ð Ñ † ² Ÿ Ÿ ² ²
± A ± œ

C f   c   sup T f    c f!

%
a ; A ; :

#

%  (by (2.6) 2.9² Ñ Ð Ñ

with c c X,p,q, , a .œ Ð ² ² Ñ% ‡

 Finally, note that the constant  in (2.9) must actually be of the form:  To seec c X,p,q, a . Ð Ñ † ² ²% ‡

this, observe that from (2.9) we have

² ² Ÿ Ð Ñ ² ²C f   c X,p,q, f!
a ; :% Ð Ñ2.10

for every  with . But then, for every , applying 2.10  to    we geta a 1 a² ² œ −‡
_

² ²_ Ð Ñ a
a ‡

² ² Ÿ Ð Ñ ² ² ² ²C f   c X,p,q, a f!
a ; ‡ :% .

This completes the proof of the claim. �

3. WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRALS

 In order to prove Theorem 1.4 we now need to prove the weighted inequality (2.2). This result is

actually contained as a particular case in the following theorem by Sawyer-Wheeden (see [SW]):

Theorem 3.1.   Suppose ,  is a measurable function,1 p q k: X X� Ÿ � _ ‚ Ä ‘�

Kf x k x,y f y d yÐ Ñ œ Ð Ñ Ð Ñ Ð Ñ'
X x\Ö × . .

For a suitable positive number , defineh mŸ

9Ð Ñ œ Ð Ñ − Ð Ñ   ÐB   sup k z,y : z, y B, d z,y h r ,š › 3.1Ñ

for every ball of the kindB 

B x    r r , < BÐ Ñ − Ð Ñwith   . 3.2
R

h
B Ð Ñ

Assume further:

Ð Ñi v w s 1  w d  v d  and  are two nonnegative measurable functions, such that for some ,  and  � = Ð"�: Ñ=. .
w

are doubling measures and satisfy:
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9 . . .Ð Ñ Ð Ñ Ÿ Ð�B B  w d v d   C
" " w
; :w

w : =
"

� = Ð"�: Ñ=
=Š ‹'

B B
‹ Š'"

;=

 3.3� Ñ

for all balls satisfying (3.2), with  independent of .C B=

Ð �ii 0Ñ There exists  such that"

. 9

. 9

"
Ð Ñ Ð Ñ Ð Ñ
Ð Ñ Ð Ñ Ð Ñ
B B r B

B B r B

w w

w  c  Ÿ ÐŠ ‹ Š ‹ 3.4Ñ

for all pairs of balls  and  satisfying (3.2).B B B , Bw w©

 Then:

² ² ² ²Kf c f_ . _ .; :Ð Ñ Ð Ñw d v d  Ÿ

where  depends on all the constants appearing in the assumptions.c

 Observe that, by property (P) and Lemma 1.7, if , the set ish m y,z B B: d z,y h r   Ÿ Ð Ñ − ‚ Ð Ñ   ×Ö
nonempty, so is well defined. The above statement is not exactly the one proved in [SW]. More9Ð ÑB  

precisely, they define for  ball (not necessarily satisfying (3.2)) and require (3.3)-(3.4) to hold for9Ð ÑB  any

any ball. On the other hand, to make sense of  they require  to have no empty annuli, condition that9Ð ÑB X

implies in particular that  is unbounded and has no atoms. We shall show, at the end of this section, that itX

is still possible to prove their theorem if the assumptions on  are relaxed requiring only certain annuli toX

be nonempty (property (P)), if (3.3) and (3.4) hold only for balls satisfying (3.2).

 In order to get the estimate (2.2), we will apply Thm. 3.1 to with   as in Thm. 1.1,k k , p, q, œ ! !

w b v b  bœ œ; :,  and  as in (2.1). Therefore we need to check assumptions (3.3)-(3.4 , and show that theÑ
constants depend on  only through its  seminorm.a BMO

 In all the following lemmas,  will be a homogeneous space satisfying (P).X

Lemma 3.2. (Reverse Doubling Condition). There exist two constants  such that$ÐX 0, K X 1Ñ � Ð Ñ �

. $ .Ð Ð ÑÑ   Ð � Ñ † Ð Ð ÑÑB x 1 B xO< < Ð Ñ3.5

for every  and . (Recall is the constant in property (P)).x X r r , R m − − Š ‹m m
2c 3c.

#
.

B B

Proof.

 Let  with  to be determined. Condition (P) implies thatr r ,  1 k K− � �Š ‹m
k K

R
B

B

b  such that .y X  kr d x,y− � Ð Ñ � kr
m

We will show that such that \ , : 3.6b � Ð Ñ © Ð Ñ Ð Ñr 0    B y B x B x i.e.< O< < Ð Ñ

a B y B x w B y) we want . Let , then< O< <Ð Ñ © Ð Ñ − Ð Ñ

d x,w c d x,y d y,w   c r rÐ Ñ Ÿ Ð Ñ � Ð Ñ � Ð � Ñ. .Š ‹ k
m

then  if , i.e.  ,  which implies ;w B x c r r Kr r r K k− Ð Ñ Ð � Ñ Ÿ Ÿ � �O< .
k K k
m c m m

cŠ ‹
.

.

b B y B x w B y) we also want  . Let again , then< < <Ð Ñ  Ð Ñ − Ð Ñœ g

kr d x,y c d x,w d w,y   c d x,w r� Ð Ñ Ÿ Ð Ñ � Ð Ñ � Ð Ñ �. .Š ‹ Š ‹.
Therefore  , and  if  , that is , which implies  d x,w r w B x r r r 1 r 1 0.Ð Ñ � � Â Ð Ñ �   Ÿ � � �kr kr k k

c c c c. . . .
< Š ‹

 By ) and ( ), if we choose  and , (3.6) holds for . Moreover, reasoning as inÐa b k 2c K r rœ œ œ.
3c

m
.
#

( ), we find that Therefore:a B y B x . O< <Ð Ñ ª Ð Ñ

. . .Ð Ð ÑÑ   Ð Ð ÑÑ � Ð Ð ÑÑ  B x   B x   B y   O< < < (by doubling)

  Ð Ð ÑÑ � Ð Ñ † Ð Ð ÑÑ   Ð � Ñ † Ð Ð ÑÑ. . $B x   c c ,c ,m B y   1 B x . < . O< <. �

Lemma 3.3. For every  there exist two positive constants  depending on  and  such that for( (− Ð0,1 c, XÑ #

every x X−
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.

.

#
Ð Ð ÑÑ
Ð Ð ÑÑ
B x

B x r
RV

<
  c  Š ‹ Ð Ñ3.7

if  .( r r R RB B
"Ÿ Ÿ Ÿ
(

Proof. By Lemma 3.2, (3.5) holds in particula , where  is a suitable constant  Let r for r r , c 1. K− Ð �B
R

c
B Ñ

be as in (3.5), fix as above and choose an integer  such that . Then from (3.5) weR, r n K r R K r8 8�"� Ÿ

obtain that, for r r ,− Š ‹B
R

cK
B
8�"

. . $ .Ð Ð ÑÑ   Ð Ð ÑÑ   Ð � Ñ Ð Ð ÑÑB x   B x   1 B x .V <
8

K r8

Since ,log nO Š ‹R
rK

Ÿ

Ð � Ñ   Ð � Ñ œ œ1   1    c$ $8
Ð � Ñ

log R R
rK r

log 1
O

OŠ ‹R

rK Š ‹ Š ‹$ #

.

So (3.7) is proved for  and  , that is for where can ber r  R K r  r r R c R , c  � Ÿ Ÿ Ÿ Ÿ ŸB B " B "
8�" K R

c

#
B

assumed 1.�
 Now take with . Then if , by the above proof:r r R c R R r c RB " B "Ÿ Ÿ Ÿ Ÿ �RB

(
(

.

. .

. (
" "

Ð Ð ÑÑ
Ð Ð ÑÑ Ð Ð ÑÑ

Ð Ð ÑÑB x

B x B x r r

B x c R RV "

< <

" V
    c   c .    † œ Ð Ñ †

c ( Š ‹ Š ‹(

If , then  and  are equivalent, by the doubling condition; therefore (3.5) isc R r R B x B x" V <( . .Ÿ Ÿ Ð Ð ÑÑ Ð Ð ÑÑ
proved for . Analogously we can prove the same for .r r R r r R RB B B

"Ÿ Ÿ Ÿ Ÿ Ÿ ŸRB

( (
( �

Lemma 3.4. There exist two positive constants  depending on  such that if  is as in (3.1) andc , c X" # 9

B B xœ Ð Ñ<  is any ball as in (3.2)

c B B c B ." #
�" �". 9 .Ð Ñ Ÿ Ð Ñ Ÿ Ð Ñ! !

Proof.  Let such that . By triangle inequalities we can writeÐ Ñ − ‚ Ð Ñ  y,z B B  d z,y h r

B y,d y,z B y,2c r B x, c 1 2c rÐ Ð ÑÑ © Ð Ñ © Ð Ð � Ñ Ñ. . . .

Then by doubling

. .Š ‹B y,d y,z   c c ,c B x,rÐ Ð ÑÑ Ÿ Ð Ñ † Ð Ð ÑÑ. .

and

k y,z   c B!
!Ð Ñ   † Ð Ñ. �"

so that

9 .Ð Ñ   † Ð ÑB c B ."
�"!

 Conversely, since  and, again by triangle inequalities and doubling, d z,y h rÐ Ñ  

inf B y,hr   c c ,c B x,r
y B x− Ð Ñ

Ð Ð ÑÑ   Ð Ñ † Ð Ð ÑÑ
<

.. .. ,

we have

. .Š ‹B y,d y,z   c BÐ Ð ÑÑ   Ð Ñ

and therefore

9 .Ð Ñ Ÿ † Ð ÑB c B .#
�"!

�

Theorem 3.5.  Conditions (3.3)-(3.4) in Thm. 3.1 hold under the assumptions of Thm. 1.4.

Proof. First, we need to bound the quantity at the left hand side of (3.3). Note that for , by 1 1
q p
œ � !

Lemma 3.4:

9 .Ð Ñ Ð Ñ ŸB B   c.
" "
; :w
�

Ð Ñ3.8

Recall that , with w b v b , b x exp Re z a x  a , z .œ œ Ð Ñ œ Ð † Ð ÑÑ − −; : __ ‚

By the John-Nirenberg Lemma, for every  there exists such that p 1, p, a  exp− Ð _Ñ ² ² Ñ Ð% %œ Ð ‡ %

a x A A c p, a . p 1, , 0,Ð ÑÑ − Ð ² ² Ñ − Ð _Ñ �: : ‡, with  constant bounded by  Therefore for every  there exists"
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% %œ Ðp, , a z  z b A  A  " ‚ %² ² Ñ − ± ± � −‡ : : such that for any with ,  with constant bounded by"

c c p, , a .œ Ð ² ² Ñ" ‡

 Let  . Then we can writeu w b´ œ= =;

 v b u uÐ"�: Ñ= :Ð"�: Ñ= �w w ":Ð"�: Ñw

; >�"œ œ œ

with  Thereforet 1.œ �
q

pw

Š ‹ Š ‹' '� �� �œ Ÿ Ð
B B B B
w d v d  u d u d c= Ð"�: Ñ= �

>�"

. . . .‹ Š ‹Š' '"
;=

 3.9� � Ñ
w : = "

"
w

>�"

"
;=

with  depending on  and the  constant of that is of . By the above remark, there existsc q, s A u, b>
=;

% % %œ Ð ² ² Ñ ± ± � œ Ð ² ² Ñp,q, a z c c p,q, a .‡ ‡ such that for  (3.9) holds, with  Then (3.3) follows from

this fact and (3.8).

 As to (3.4), in view of Lemma 3.4 it is enough to prove

.

.

Ð Ñ Ð Ñ
Ð Ñ Ð Ñ
B r B

B r B

w w

  cŸ † Š ‹"
for some , and  By the triangle inequality and doubling:" � œ Ð Ñ œ Ð Ñ ©0 B B x ,r , B B x ,r B.! ! " "

w

. .Ð Ð ÑÑ Ÿ Ð Ñ Ð Ð ÑÑB x ,r   c c ,c B x ,r" ! . ! !.

Then by Lemma 3.3, for  , r r r" !� �x
R

"
"x

(

. .

. .

Ð Ñ Ð Ñ
Ð Ñ Ð Ð ÑÑ
B B

B B x ,r r

r
w w

" ! !

"  c   cŸ † Ÿ † Š ‹" . 3.10Ð Ñ

Note that by (3.2) and Lemma 1.6,  , for   small enough (independent of , and thisr x , x! ! "� Ñ
R R

h

x x! "�
(

(

proves (3.4) under our assumptions. �

 Finally we need to show that Sawyer-Wheeden's proof can be adapted to hold in the hypotheses of

Theorem 3.1. In [SW], they construct a family of "dyadic balls", taking  for each   to be ak B̂− ™ š ›54
4

sequence of balls of radius , maximal with respect to the property that  for , where-5�" B B i j^ ^5 5

4 3 œ g Á

- œ c 2c X. .
#� . If  is bounded (case implicitely excluded in [SW]) we need to modify slightly this

construction. Recalling that, by Lemma 1.6, if  is bounded there exists a constant  such that  forX K R KB Ÿ
every , let  be such that Then for every  and every , x X k K . k k j B B x ,− − Ÿ �   œ Ð! !

5 �" 5 5 5
4 4™ - -! !

-5 5
4

5
4 !Ñ œ œ  X. B B k k jDefine dyadic balls setting   for , every ; these balls have the same properties as!

those of [SW], therefore we can say that for, every dyadic ball ,B x,rÐ Ñ

r M R� † ÐB 3.11Ñ

with  independent of  and  We now choose the number  appearing in Thm. 3.1 (see (3.2)) asM x r. h

h min m, c /4, 1/M .œ Š ‹.
# Ð Ñ3.12

By Lemma 1.7, Lemmas 3.2-3.4 and Theorem 3.5 still hold if  is replaced by . The condition  ism h h c /4Ÿ .
#

required by the proof in [SW], and the condition  is required to make sense of the function  in (3.2).h mŸ 9

Moreover in [SW]'s proof the dyadic balls that need to satisfy (3.3)-(3.4) are only those with .r � R

h
B

 With this remark, the proof of Theorem 1.4 is completed.

APPENDIX. Some examples

Example A.1.  A bounded space, with atoms, satisfying condition (P).

 Let ;  put in  the euclidean distance and the following measure :X , X 0 x: x X§ œ Ö × " Ö ± ± œ "×‘8 .

. . . is the usual surface measure on  and  Then  is doubling, so that  is aÖ Ö± ± œ "× × œ " Ð Ñx 0 . X,d,.

homogeneous space. Note that for ,  and ; for ,  In this case (P)± x r 0 R x 0 r R .± œ " œ œ # œ œ œ "B B ! !

holds for any .m 0,− Ð "Ñ
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Example A. .  # A homogeneous space such that (P) and (RD) do not hold.

In other words, we show that the condition does not imply the condition.doubling reverse doubling 

 In , let be the point ,0, ,0 , the ball  for ,‘8 5 "
#C  k , ,  B  B C k5 5 5"Î#Ð Ð5 � á Ñœ " # áÑ Ð Ñ   #

B B 0 . X B d B" 5 5"Î#
5œ"

_
5œ Ð Ñ œ Ñ œ #Let   with the euclidean distance  and the measure  such that  and,- . .Ð

on each ball ,   is uniformly distributed.B5 .

Claim 1.   does not satisfy the (RD) condition. To see this, observe that the annuli ,. š ›b x a5 5�"� ± ± �

with , , are empty, and  Therefore for every  there existsa k b k     . M 05 5
5 5 Ð �"Ñ

�"œ œ � " œ Ä _ �
a k

b k
5
"

5

5
"

5

k  a Mb B 0 B 0 .! 5 �" 5such that  and therefore ! ! 5 5! !
  Ð Ñ œ Ð ÑM b b

Claim 2.   satisfies the doubling condition.  Let , with . B B P P p , ,p .< < " 8œ Ð Ñ œ Ð á Ñ

Case . k B B k max k B B  " © œ ± ©Assume for some ,  and let . Then certainly5 < ! 5 <š ›
p r b k B" 5 �" ! <

5 �" 5� Ÿ œ Ð � "Ñ � " Ð Ñ   #!
! !     and     ..

But then

p r  k   k   a  ." ! ! 5 �#
5 �" 5 �#� # Ÿ # Ð � "Ñ � " Ÿ Ð � #Ñ œŠ ‹! !

!

Therefore But , therefore the doubling conditionB B 0 B . B      4 B#< ! ! <
5œ!

5 �"
5 5 �#© Ð Ñ ´ Ñ œ # Ÿ # Ÿ Ð Ña5 
#!

!
!.Ð ! .

holds with c 4.. œ

Case . k B B r B  B  B# © � "Î If for all , , then  so that and intersect only one ball . Then the doubling5 < < #< 5

condition holds.
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Detailed version of the changes in Sawyer-Wheeden's theorem:

Remark 3.2. Observe that, by property (P) and Lemma 1.7, if , the set h m y,z B B: d z,y h rŸ Ð Ñ − ‚ Ð Ñ   ×Ö
is nonempty, so is well defined. The above statement is not exactly the one proved in [SW]. More9Ð ÑB  

precisely, they define for  ball (not necessarily satisfying (3.2)) and require (3.3)-(3.4) to hold for9Ð ÑB  any

any ball. On the other hand, to make sense of  they require  to have no empty annuli, condition that9Ð ÑB X

implies in particular that  is unbounded and has no atoms. We shall show, at the end of this section, that itX

is still possible to prove their theorem if the assumptions on  are relaxed requiring only certain annuli toX

be nonempty (property (P)), if (3.3) and (3.4) hold only for balls satisfying (3.2).

 We have now to justify the statement of Theorem 3.1 (see Remark 3.2). To do this, we recall some

facts from the proof of this result in [SW]. They construct a family of "dyadic balls", at the following way.

Set . For each , let  be a sequence of balls of radius , maximal with respect to- -œ c 2c k B̂. .
#

5

4� − ™ š ›
4

5�"

the property that  for  Set , where is the centre of . The balls  willB B i j. B B x , x  B B^ ^ ^5 5 5

4 3 4
5 5 5 5 5
4 4 4 4 œ g Á œ Ð Ñ-

be called "dyadic balls". They prove that:

i BÑ every ball of radius  is contained in at least one of the balls  .-5�" 5
4

ii    M k , M c , c .Ñ !
4

.; ™B5
4
Ÿ −  for all  where  is a constant depending only on .

iii B B i j k .^ ^Ñ œ g   for , 
5 5

4 3 Á − ™

 If  is bounded (this case is implicitely excluded in [SW], as we noted in Remark 3.2) we need toX

modify slightly the previous construction. First we need the following

 By the above Remark, if  is bounded there exists a constant  such that  for every LetX K R K x X. B Ÿ −
k K . k k j B B x , X. ! !

5 �" 5 5 5 5
4 4− Ÿ �   œ Ð Ñ œ™ - - - such that Then for every  and every , Note that! !

properties ( )-( )-( ) still hold if we change the previous definition of dyadic balls setting   fori ii iii B B5
4

5
4œ !

k k j B x,r  Ð Ñ!, every . So we can say that for, every dyadic ball ,

r M R� † ÐB 3.11Ñ

with  independent of  and  We now fix the number  appearing in Thm. 3.1 (see (3.2)) at the followingM x r. h

way:

h min m, c /4, 1/M .œ Š ‹.
# Ð Ñ3.12

By Lemma 1.7, Lemmas 3.2-3.4 and Theorem 3.5 still hold if  is replaced by . The condition  ism h h c /4Ÿ .
#

required by the proof in [SW]; recall also that the condition  is required to make sense of the functionh mŸ
9 in (3.2). Reading carefully the proof in [SW], one can see that they only apply assumptions (3.3)-(3.4) to

particular B x , r r . r balls, namely dyadic balls of the kind with  Moreover, by (3.11)-(3.12), . So,< BÐ Ñ � � R

h
B

in the statement of Thm. 3.1, we only need to assume (3.3)-(3.4) for balls satisfying (3.1). Therefore the

theorem holds exactly in the form in which we have stated it.

 With this remark, the proof of Theorem 1.4 is completed.


