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Abstract. We introduce the concept of locally homogeneous space, and prove in this con-
text L p and Cα estimates for singular and fractional integrals, as well as L p estimates on
the commutator of a singular or fractional integral with a B M O or V M O function. These
results are motivated by local a priori estimates for subelliptic equations.

1. Introduction

1.1. Motivation

The theory of singular integrals has been usefully applied to local a priori esti-
mates for PDEs in several contexts of increasing generality, in the last decades. The
abstract framework of spaces of homogeneous type, introduced by Coifman and
Weiss [17], has proved to be a suitable framework in many cases, so far: we have
a set (which in concrete applications is usually a bounded domain of R

n), a dis-
tance or a quasidistance adapted to the differential operator (the Euclidean distance
for classical elliptic equations, parabolic distance for parabolic equations, Carnot–
Carathéodory distance—or some variation of it—for operators built on Hörmand-
er’s vector fields—see [25], and so on), and a measure (usually the Lebesgue
measure) which is doubling with respect to the metric balls. In these situations
the quasidistance ρ is usually defined in some �0 which is either the whole R

n or
some domain which is larger than the bounded domain � where we want to prove
our estimates. Since the balls B (x, r) are, by definitions, subsets of �0, that is

B (x, r) = {y ∈ �0 : ρ (x, y) < r} ,
if we want to apply the theory of spaces of homogeneous type to the set �, the
doubling condition we have to check is

μ (B (x, 2r) ∩�) ≤ cμ (B (x, r) ∩�) for any x ∈ �, r > 0. (1.1)
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On the other hand, the doubling condition that reasonable ρ and μ usually satisfy
is

μ (B (x, 2r)) ≤ cμ (B (x, r)) for any x ∈ �, 0 < r < r0 (1.2)

for some small r0. Passing from (1.2) to (1.1) requires some “smoothness” property
of ∂�, a property which, however, is not a natural requirement for our original local
problem, but more a technical complication due to the fact that, in order to apply
the theory of spaces of homogeneous type, we are regarding the set�, which in our
problem is a subset of a larger universe, as the universe itself. If μ is the Lebesgue
measure and ρ is the Euclidean distance, in order to fulfil (1.1) it is enough to
require ∂� Lipschitz; if ρ is the Carnot–Carathéodory distance induced by a set of
Hörmander’s vector fields X1, X2, . . . , Xq which is naturally attached to the study
of the operator

q∑

i=1

X2
i (1.3)

then (1.1) is satisfied for instance when� is itself a metric ball, as was first proved
in [20]; this result (as appears for instance from the proof given in [6, Lemma
4.2]) basically relies on the fact that this quasidistance satisfies a kind of segment
property which reads as follows: for any couple of points x1, x2 at distance r and
for any number δ < r and ε > 0 there exists a point x0 having distance ≤ δ from
x1 and ≤ r − δ + ε from x2. An analog result of regularity for the metric ball has
been proved in [7] for the “parabolic Carnot–Carathéodory distance” attached to
the operator

∂t −
q∑

i=1

X2
i .

This distance has no longer the above segment property, but the simple way in which
the time variable is involved allows to do explicit (but nontrivial!) computations
and show that when � is a metric ball, (1.1) still holds.

If we now pass to consider Hörmander’s operators of the kind

q∑

i=1

X2
i + X0 (1.4)

(where the drift term X0 is part of the set X0, X1, . . . , Xq which satisfies Hörmand-
er’s condition), the corresponding quasidistance ρ is the one defined by Nagel
et al. [25]; this quasidistance has been much less studied than the usual Carnot–
Carathéodory distance (we can quote, in the context of nonsmooth Hörmander’s
vector fields, the two papers [10,11]). Although a local doubling condition (1.2)
holds, as proved in [25], this quasidistance does not satisfy the segment property
and, as far as we know, a condition of kind (1.1) has never been proved for� a met-
ric ball, or for any other special kind of bounded domain�. Therefore the existing
results do not allow to apply the theory of spaces of homogeneous type to the space
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(�, ρ, μ) when � is some bounded domain of R
n , ρ is the Nagel–Stein–Wainger

distance attached to the set of Hörmander’s vector fields X1, X2, . . . , X0 (with X0
of “weight” two), and μ the Lebesgue measure. This problem has been sometimes
overlooked, apparently; for instance, in the famous paper [26], L p estimates are
proved for operators (1.3), and stated for operators (1.4), without any reference to
the mere existence of the problem of assuring the validity of condition (1.1). On
the other hand, as already suggested, one feels that if our final goal is that of prov-
ing local estimates, no kind of “smoothness” of the domain � with respect to the
quasidistance should be a crucial requirement; in other words, it is reasonable that
this difficulty could be bypassed. The basic scope of the present paper is to build
up a local theory of singular integrals which does not require checking condition
(1.1), when (1.2) is known.

Another problem of a priori estimates for PDEs in which proving that (1.2)
implies (1.1) for some domain � appears troublesome has been studied in [9]. In
that paper the Authors consider a class of Kolmogorov–Fokker–Planck operators
on R

n × [−1, 1], for which the natural quasidistance is a function ρ (not equiv-
alent to the Carnot–Carathéodory distance induced by a system of Hörmander’s
vector fields), which satisfies the quasi-triangle inequality on any compact set and
satisfies a local doubling condition (1.2) for any bounded �; again, however, one
has no idea of how to prove (1.1) for some particular bounded �. In that case, the
Authors overcame the problem by applying an ad-hoc theory of singular integrals
in nondoubling spaces, developed in [2]. The resort to theories of singular integrals
in nondoubling contexts, as have been developed in the last decade by Tolsa, Naza-
rov–Treil–Volberg, and other authors (see for instance the book [28] and references
therein), is actually an alternative possibility in order to bypass (1.1). However,
and here another motivation of the present paper comes in, when proving a priori
L p estimates for PDEs with V M O coefficients (a line of research which started
with the papers by Chiarenza et al. [14,15] and developed in several directions in
the last 20 years), one needs a series of results about commutators of singular and
fractional integrals with B M O functions, which do not have a natural counterpart
in the nondoubling context; more precisely, results of this kind have been actually
proved by Tolsa [27], in the context of (Rn, d, dμ), whereμ is a very general Radon
measure, but d is the Euclidean distance. Since the extension of these deep results
to the case of a general quasidistance d appears far from being obvious, it seems
easier and more natural for the problem under exam to establish these commutator
theorems in the framework of a theory of singular integrals in a locally doubling
context (instead than in a nondoubling one). More generally, we think that the idea
of proving a local version of some basic results about singular integrals is a very
natural one, and we feel that these results can be of some interest also for other
applications.

1.2. Main results

In this paper we will prove, in the context of locally homogeneous spaces (which
will be defined in the next section), results of continuity, in L p and Cα spaces, for
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singular and fractional integrals, as well as L p estimates for the commutator of a
singular or fractional integral with the multiplication with a B M O function. Also,
we will state these commutator theorems in a form suitable to prove the smallness
of the L p norm of the commutator on a small ball, whenever the B M O function
actually belongs to V M O . This localized version of the commutator theorem for a
V M O function, in the original Euclidean case (exploited in [14,15]) relies on the
possibility of approximating a V M O function by a uniformly continuous function
in B M O norm, and on the possibility of extending to the whole space a uniformly
continuous function defined on a ball, preserving the continuity modulus. Here we
manage to establish directly the localized version of the commutator theorems for
a V M O function, without the necessity of proving the aforementioned approxima-
tion and extension results. Therefore, under this respect, our approach conceptually
simplifies also the Euclidean case. We will also deal, very briefly, with a local ver-
sion of the maximal function and its L p continuity. Finally, we will present a natural
extension to our context of the integral characterization of Hölder spaces given by
Campanato spaces. All these tools will be useful in the alluded applications.

Our main results are: Theorems 5.3, 5.4, 5.7 and 5.8 in Sect. 5; Theorems 7.1,
7.2, 7.3 in Sect. 7; Theorem 8.3 in Sect. 8 and Theorem 9.2 in Sect. 9. We also think
that the basic theory developed in Sects. 2–3, particularly Theorems 3.1 and 3.10,
could be useful to prove further results in the same spirit.

All the results proved in this paper will be used in the proof of L p and Cα

estimates for nonvariational operators structured on Hörmander’s operators of type
(1.4), that is for operators of the form

q∑

i. j=1

ai j (x)Xi X j + a0(x)X0

where X0, X1, . . . , Xq are a system of smooth Hörmander’s vector fields in a
bounded domain of R

n (n > q + 1),
{
ai j
}

is a uniformly positive matrix with
bounded entries, a0 is bounded and bounded away from zero and all the coeffi-
cients ai j , a0 belong to the suitable function space V M O or Cα (respectively, to
prove L p or Cα estimates on Xi X j u). These estimates are proved in a separate
paper [8], and generalize the results proved in [3] and [7] when the drift X0 is
lacking.

1.3. Strategy

The basic idea, in order to bypass the necessity of checking condition (1.1) instead
of (1.2), is to adapt the abstract construction of dyadic cubes in spaces of homoge-
neous type carried out by Christ in [16]. In that paper, the Author shows how in any
space of homogeneous type one can construct, for any k ∈ Z, a family of “dyadic
cubes” of diameter comparable to δk (with δ a small fixed number). Actually these
“cubes” are open sets, defined by an abstract construction, which nevertheless share
with the classical dyadic cubes all the basic properties. The relevant fact for us is
that each of these cubes Q is, in turn, a space of homogeneous type, that is in [16]
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the Author proves that (1.1) actually holds for� = Q. Here we adapt the previous
construction in a local setting. Given our space �, which is seen as the union of
an increasing sequence of bounded subsets �n , we construct for each n and each
scale k = 1, 2, 3 . . ., a family of (small) dyadic cubes essentially covering �n and
contained in �n+1; each of these cubes can still be proved to be a space of homo-
geneous type; moreover, the same is true for any finite union of dyadic cubes of the
same scale k. The idea is then to apply known results for spaces of homogeneous
type to suitable unions of dyadic cubes which cover a fixed small ball, and derive
the corresponding result on the ball. Since dyadic cubes are abstract objects, which
in concrete applications of the theory cannot be explicitly exhibited, our job is to
use dyadic cubes just as a tool, but to state and prove all our results in the language
of balls, to make them easily applicable.

To make more transparent the strategy of our construction, let us point out what
follows.

We will show that for any n we can cover �n with a finite union of balls of
any prescribed small size, and for each of these balls we can construct a space of
homogeneous type F which is contained in �n+1, “almost contains” this ball B,
and is comparable to B, both in measure and in diameter. This “almost inclusion”
is made precise in two ways:

(1) F ⊃ B \ E where E is a zero measure set; this inclusion is enough to handle
L p estimates or more generally estimates which involve integral norms;

(2) the closure of F contains B; this inclusion is enough to handle Cα estimates,
or more generally estimates which involve moduli of uniform continuity of
the functions.

The idea of exploiting Christ’s construction of dyadic cubes to prove results
in a locally doubling context has been already used by Carbonaro et al. [13]; their
context, however, is different from ours: in that paper the Authors consider a situa-
tion where the measure of balls grows fast at infinity, so that the doubling condition
holds for balls of radius r ≤ r0, for any fixed r0; on the other hand, these Authors
have not our problem of keeping far from the boundary of a bounded domain, to
avoid intersections. Moreover, they use dyadic cubes to adapt the proofs which hold
in the doubling case, while our strategy is not to adapt the existing proofs but to
apply the existing results which hold in the doubling case.

The construction of a suitable family of spaces of homogeneous type is not the
only problem to overcome in our situation. The possible overlapping of the balls
B (x, r) with the boundary of the considered domain creates problems under at
least other two regards. The first is the validity of a suitable cancellation property
for the kernel of singular integral operator: if we know that a singular kernel has
a bounded integral over small spherical shells, this does not imply the persistence
of this property when we integrate over the intersection of the spherical shell with
some fixed domain. This problem will be solved using suitable cutoff functions.
The second problem is to properly define and handle B M O and V M O spaces,
avoiding to take the average of a function over the intersection of B (x, r) with a
fixed domain. To this aim we will introduce a B M Oloc space adapted to a couple
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of domains�n ⊂ �n+1, which in our context is a natural notion, and we will show
which relation this space has with the standard B M O .

1.4. Plan of the paper

In Sect. 2 we state precisely our definition of locally homogeneous space and draw
some first consequences of the definition, in terms of topology and measure. Section
3 contains the construction of dyadic cubes and the proof of their relevant proper-
ties which will allow to apply the theory of spaces of homogeneous type. In Sect.
4 we build, in a fairly standard way, Hölder continuous cutoff functions, another
tool which will be useful in the following. In Sect. 5 we prove our local L p and
Cα continuity results for singular and fractional integrals. In Sect. 6 we introduce
B M O and V M O spaces, both in the standard and in a local version, and study the
relation between the two concepts. In Sect. 7 we prove local L p estimates on the
commutator of a singular or fractional integral with a B M O or V M O function.
In Sect. 8 we deal with the local maximal operator and its L p continuity. In Sect.
9 we prove a local integral characterization of Hölder continuity, in the spirit of
the classical Campanato spaces. Finally, in Sect. 10 we extend the results of Sects.
5–10 to the more general situation where the local quasidistance is quasisymmetric
but not symmetric. An Appendix collects all the known results about spaces of
homogeneous type which we need throughout the paper.

2. The abstract framework of locally homogeneous spaces

We are going to state the assumptions which will define the notion of locally homo-
geneous space. (For comparison, the standard definition of space of homogeneous
type is recalled in Appendix, Sect. 11).

(H1) Let � be a set, endowed with a function ρ : �×� → [0,∞) such that for
any x, y ∈ �:

(a) ρ (x, y) = 0 ⇔ x = y;
(b) ρ (x, y) = ρ (y, x).

For any x ∈ �, r > 0, let us define the ball

B (x, r) = {y ∈ � : ρ (x, y) < r} .
These balls can be used to define a topology in�, saying that A ⊂ � is open
if for any x ∈ A there exists r > 0 such that B (x, r) ⊂ A. Also, we will say
that E ⊂ � is bounded if E is contained in some ball.
Let us assume that:

(H2) (a) the balls are open with respect to this topology;
(H2) (b) for any x ∈ � and r > 0 the closure of B (x, r) is contained in

{y ∈ � : ρ(x, y) ≤ r}.
We will prove in a moment that the validity of conditions (H2) (a) and (b) is
equivalent to the following:

(H2′) ρ (x, y) is a continuous function of x for any fixed y ∈ �.
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(H3) Let μ be a positive regular Borel measure in �.
(H4) Assume there exists an increasing sequence {�n}∞n=1 of bounded measurable

subsets of �, such that:

∞⋃

n=1

�n = � (2.1)

and such for, any n = 1, 2, 3, . . .:

(i) the closure of �n in � is compact;
(ii) there exists εn > 0 such that

{x ∈ � : ρ (x, y) < 2εn for some y ∈ �n} ⊂ �n+1; (2.2)

(H5) there exists Bn ≥ 1 such that for any x, y, z ∈ �n

ρ (x, y) ≤ Bn (ρ (x, z)+ ρ (z, y)) ; (2.3)

(H6) there exists Cn > 1 such that for any x ∈ �n, 0 < r ≤ εn we have

0 < μ(B (x, 2r)) ≤ Cnμ (B (x, r)) < ∞. (2.4)

(Note that for x ∈ �n and r ≤ εn we also have B (x, 2r) ⊂ �n+1).

Definition 2.1. We will say that
(
�, {�n}∞n=1 , ρ, μ

)
is a locally homogeneous

space if assumptions (H1)–(H6) hold.

Dependence on the constants. The numbers εn, Bn,Cn will be called “the con-
stants of�n” It is not restrictive to assume that Bn,Cn are nondecreasing sequences,
and εn is a nonincreasing sequence. Throughout the paper our estimates, for a fixed
�n , will often depend not only on the constants of �n , but also (possibly) on the
constants of �n+1,�n+2,�n+3. We will briefly say that “a constant depends on
n” to mean this type of dependence.

In the language of [17], ρ is a quasidistance in each set �n; we can also say
that it is a local quasidistance in �. We stress that the two conditions appearing in
(H2) are logically independent each from the other, and they do not follow from
(2.3), even when ρ is a quasidistance in �, that is when Bn = B > 1 for any n. If,
however, ρ is a distance in �, that is Bn = 1 for any n, then (H2) is automatically
fulfilled.

The continuity of ρ also implies that (2.3) still holds for x, y, z ∈ �n . We will
sometimes exploit this fact.

Also, note that μ (�n) < ∞ for every n, since �n is compact. (This follows
by the regularity of μ, or also from the finiteness of the measure of balls, see (H6),
since �n can be covered by a finite number of small balls).

We also point out that assuming μ regular (see (H3)) is not really necessary, as
will be explained after Proposition 4.2; however, since this assumption is harmless
in the applications we are interested in, we prefer to keep it, in order to avoid the
necessity of entering into annoying details.
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Example 2.2. (i) If (�, ρ, dμ) is a bounded space of homogeneous type in the
sense of Coifman and Weiss [17] (the definition will be recalled in Appendix),
the above conditions are fulfilled choosing �n ≡ �; the constants Bn,Cn

can then be taken independent of n, and εn =diam�.
(ii) In the applications to subelliptic equations that we have in mind, and will be

dealt in [8], � is a bounded domain of R
N and �n an increasing sequence

of bounded domains, with �n � �n+1 � � for any n; ρ is the Nagel-Stein-
Wainger distance induced by a family X0, X1, X2, . . . , Xq of Hörmander’s
vector fields, where X0 has weight two, μ the Lebesgue measure in R

N .
(iii) The same setting of (ii) fits the theory of nonsmooth Hörmander’s vector

fields, as dealt in [10,11].
Note that in the situations (ii)–(iii) ρ is actually a distance, which induces the
Euclidean topology, and (H6) is a known result.

(iv) In the situation considered in [9], � = R
N × [−1, 1] ,�n = Bn × [−1, 1]

where Bn is the Euclidean ball of center 0 and radius n in R
N , ρ (z, ζ ) =∥∥ζ−1 ◦ z

∥∥where ◦ is a Lie group operation related to the differential operator

L =
p0∑

i, j=1

ai j∂
2
xi x j

+
N∑

i, j=1

bi j xi∂x j − ∂t (where p0 < N )

which is under study, while ‖·‖ is the homogeneous norm defined by the family
of dilations related to another differential operator, which is the “principal part”
of L . Therefore ρ is neither the usual distance considered in Carnot groups, nor is
(equivalent to) the Carnot–Carathéodory distance induced by the vector fields; ρ
satisfies (H5) and induces the Euclidean topology; from its analytical definition it
is clear that ρ is continuous, hence (H2) is fulfilled; also (H6) can be proved. More
precisely, the function ρ considered in [9] is not symmetric but satisfies a weaker
condition: for any n there exists An > 1 such that

ρ (x, y) ≤ Anρ (y, x) for any x, y ∈ �n . (2.5)

This motivates a further extension of our theory, as we will explain in a moment.

Remark 2.3. (Extension to quasisymmetric functions) As anticipated in the above
Example (iv), in view of some applications it is desirable to consider the more
general setting in which ρ is not assumed symmetric, but satisfies condition (2.5).
However, developing the whole theory of Sect. 3 under this weaker assumption
would make our computations considerably heavier. Instead, it is much easier to
develop first the theory under the symmetry assumption, and then to show that
our main results about singular and fractional integrals still hold if we replace the
symmetry condition with (2.5). This extension will be discussed in Sect. 10.

In the rest of this section we will make some remarks and prove some easy facts
related to topology and measure in a locally homogeneous space.

Since, by (H2) (a), the balls are open, for each x ∈ � the balls B (x, r) satisfy
the axioms of complete system of neighborhoods of x; hence the topological space
� is first countable, and continuity and closedness can be discussed by means of
sequences of points. Let us prove the following fact, that we have claimed before.
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Proposition 2.4. Conditions (H2) are equivalent to condition (H2′).

Proof. Assume (H2), and let us prove the continuity of x �−→ ρ(x, y). Fix x ∈ �
and take a sequence {xk} converging to x . Let us show that ρ (xk, y) → ρ (x, y)
for any y ∈ �. Let r = ρ(x, y) and ε > 0; since x ∈ B (y, r + ε) and the balls
are open, there exists B (x, δ) ⊂ B (y, r + ε). Then xk ∈ B (y, r + ε) definitively,
since xk → x . This implies that ρ (xk, y) < r + ε definitively, so that

limsup
k→∞

ρ (xk, y) ≤ r + ε.

This holds for any ε > 0, hence

limsup
k→∞

ρ (xk, y) ≤ r.

We now want to show that

liminf
k→∞ ρ (xk, y) ≥ r, (2.6)

which will imply ρ (xk, y) → ρ(x, y). Let again r = ρ (x, y) and ε > 0; then
x /∈ B

(
y, r − ε

2

)
. By (H2) (b),

B (y, r − ε) ⊂ B
(

y, r − ε

2

)
,

hence (denoting the complement of A with Ac) x belongs to B (y, r − ε)
c
; since

this is an open set, there exists B (x, η) ⊂ B (y, r − ε)
c; hence xk ∈ B (y, r − ε)

c

definitively, which means that ρ (xk, y) ≥ r − ε definitively, and

liminf
k→∞ ρ (xk, y) ≥ r − ε.

This holds for any ε > 0, so (2.6) follows.
Conversely, assume now the continuity of ρ, and let us prove (H2). Let y ∈

B (x, r), so that ρ(x, y) < r . Since ρ is continuous, there exists B
(
y, r ′) such that

for any z ∈ B
(
y, r ′)we have ρ (x, z) < r; hence B

(
y, r ′) ⊂ B (x, r) and B (x, r)

is open, that is (H2) (a) holds.
Let now y ∈ B (x, r); since we already know that balls are open, as noted above

this means that yk → y for some sequence {yk} ⊂ B (x, r). Hence ρ (yk, x) < r
and limsupk→∞ρ (yk, x) ≤ r . However, ρ is continuous, so

limsup
k→∞

ρ (yk, x) = ρ (y, x) ,

which means that y ∈ {z : ρ (z, x) ≤ r}, which is (H2) (b). ��
The next property, which involves both ρ and the measure μ, tells us that also

even when estimating Hölder norms, zero measure sets are negligible.

Proposition 2.5. (i) Let A, E⊂�, A open and E of measure zero. Then A\E=A.
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(ii) Let f : A \ E → R with A, E as above, and f such that, for some α,C > 0

| f (x)− f (y)| ≤ Cρ (x, y)α (2.7)

for any x, y ∈ A \ E. Then f can be continuously extended to A in such a way
that (2.7) holds for any x, y ∈ A.

Proof. (i) Let x ∈ A and {xk} ⊂ A such that xk → x . Since A is open, for any
k there exists rk > 0 such that B (xk, rk) ⊂ A. It is not restrictive to assume
that rk → 0. For any k there exists yk ∈ B (xk, rk) \ E ; otherwise E would
contain a ball, which by (H6) has positive measure. By (2.1), x ∈ �n for
some n; then, by (2.2) the sequence {xk} is definitively contained in �n+1;
for the same reason the balls B (xk, rk) are definitively contained in �n+2,
hence we can apply the quasitriangle inequality (2.3) writing

ρ (yk, x) ≤ Bn+2 (ρ (yk, xk)+ ρ (xk, x)) ≤ Bn+2 (rk + ρ (xk, x)) → 0

for k → ∞, so yk → x . Since yk ∈ A \ E , this implies x ∈ A \ E and we
are done.

(ii) Since ρ is continuous, (2.7) implies that f is uniformly continuous on A \ E ,
hence it can be continuously extended to A \ E in such a way that (2.7) still
holds. By point (i) A \ E = A, so (ii) is proved. ��

3. Dyadic cubes in a locally homogeneous space

Throughout this paper, until Sect. 9 enclosed, we will assume that
(
�, {�n}∞n=1,ρ,μ

)

be a locally homogeneous space.
The construction of dyadic cubes, which has been anticipated in the introduc-

tion, is contained in the following:

Theorem 3.1. For any n = 1, 2, 3, . . . there exists a collection of open sets

{
Qk
α ⊂ �, k = 1, 2, 3 . . . , α ∈ Ik

}

(where Ik is a set of indices), positive constants a0, c0, c1, c2, δ ∈ (0, 1) and a set
E ⊂ �n of zero measure, such that for any k = 1, 2, 3, . . . we have:

(a) ∀α ∈ Ik , each Qk
α contains a ball B

(
zk
α, a0δ

k
) ;

(b)
⋃
α∈Ik

Qk
α ⊂ �n+1;

(c) ∀α ∈ Ik, 1 ≤ l ≤ k there exists Ql
β ⊇ Qk

α;
(d) ∀α ∈ Ik , diam

(
Qk
α

)
< c1δ

k and Qk
α ⊂ B

(
zk
α, c1δ

k
) ;

(e) � ≥ k �⇒ ∀α ∈ Ik, β ∈ Il , Q�
β ⊂ Qk

α or Q�
β ∩ Qk

α = ∅;
(f) �n \⋃α∈Ik

Qk
α ⊂ E;

(g) ∀α ∈ Ik , x ∈ Qk
α \ E, j ≥ 1 there exists Q j

β � x;
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(h) μ
(
B (x, 2r) ∩ Qk

α

) ≤ c2μ
(
B (x, r) ∩ Qk

α

)
for any x ∈ Qk

α \ E, r > 0. More
precisely, for these x and r we have:

μ
(

B (x, r) ∩ Qk
α

)
≥
{

c0μ (B (x, r)) for r ≤ δk

c0μ
(
Qk
α

)
for r > δk (3.1)

Note that the cubes Qk
α and all the constants depend on n, so we should write,

more precisely

{
Q(n),k
α

}

α∈I (n)k

; δ(n); a0,(n), c0,(n), c1,(n), c2,(n).

However, in order to simplify notation, we will skip the index (n) whenever doing
so does not create ambiguity. As will be apparent from the proof, the sequence of
constants δ(n) can be assumed nonincreasing.

The sets Qk
α can be thought as dyadic cubes of sidelength δk . Note that k is a

positive integer, so we are only considering small dyadic cubes.
The proof of Theorem 3.1 is not much more than a careful inspection and adap-

tation of some proofs contained in [16]. However, our iterative construction is a bit
more involved because at every step n the “universe” that we want to cover with
our cubes enlarges. Moreover, in order to use the quasitriangle inequality, we need
to know in advance that the points belong to some domain; this will be often proved
by a tricky combined use of (2.2) and (2.3).

Proof of Theorem 3.1, first part. For a fixed �n , let δ > 0 to be fixed later, and let
us perform the following iterative construction.

For k = 1, let us fix a maximal collection of points
{
z1
α

}
α∈I1

⊂ �n such that

ρ
(

zk
α, zk

β

)
≥ δ for any α �= β.

By the maximality, we can say that for x ∈ �n there exists z1
α such that ρ

(
z1
α, x

)
<

δ, hence

E1 ≡ �n ⊆
⋃

α∈I1

B
(

z1
α, δ

)
≡ E2.

For k = 2, let us fix a maximal collection of points
{
z2
α

}
α∈I2

⊂ E2 such that

ρ
(

z2
α, z2

β

)
≥ δ2 for any α �= β.

By the maximality, we can say that for any x ∈ E2 there exists z2
α such that

ρ
(
z1
α, x

)
< δ2, hence

E2 ⊆
⋃

α∈I2

B
(

z2
α, δ

2
)

≡ E3.
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Continuing this way, we build a family of points
{
zk
α

}
α∈Ik

for k = 1, 2, 3, . . ., and
a family of sets E1 ⊆ E2 ⊆ E3 ⊆ . . .. We are going to show that it is possible to
choose δ small enough so that

∞⋃

k=1

Ek ⊂ �n+1. (3.2)

Namely: E1 = �n ⊂ �n+1 and, by definition of E2 and (2.2) E2 ⊂ �n+1 as
soon as

δ < 2εn . (3.3)

Let now y ∈ E3. Then there exists z2
α ∈ E2 such that ρ

(
y, z2

α

)
< δ2 and there

exists z1
β ∈ �n such that ρ

(
z2
α, z1

β

)
< δ. Since E2 ⊂ �n+1, we have y ∈ �n+2

(that is E3 ⊂ �n+2) as soon as

δ2 < 2εn+1. (3.4)

Under this assumption we can write

ρ
(

y, z1
β

)
≤ Bn+2

(
ρ
(

y, z2
α

)
+ ρ

(
z2
α, z1

β

))
≤ Bn+2

(
δ2 + δ

)
.

Then, under the further assumption

Bn+2

(
δ2 + δ

)
≤ 2εn (3.5)

we can conclude that E3 ⊂ �n+1 (which strengthen the previous conclusion E3 ⊂
�n+2).

This idea can be iterated showing that for any y ∈ EN , N = 2, 3, 4 . . . there
exists x ∈ �n such that

ρ (x, y) ≤ Bn+2

[
δ + Bn+2

[
δ2 + Bn+2

[
δ3 + · · · + Bn+2

[
δN−1 + δN

]]]]

≤
N∑

k=1

(Bn+2δ)
k ≤ δBn+2

1 − δBn+2
< 2δBn+2

(3.6)

provided

δ < 1/ (2Bn+2) . (3.7)

If, moreover,

δ < εn/Bn+2, (3.8)

we can conclude (3.2). Choosing δ small enough to fulfill conditions (3.3)–(3.8)
we are done.

Note that, for any k = 2, 3 . . . , α ∈ Ik ,

zk
α ∈ Ek =

⋃

β∈Ik−1

B
(

zk−1
β , δk−1

)
⊇ Ek−1 (3.9)

hence for any zk
α there exists β ∈ Ik−1 such that
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ρ
(

zk
α, zk−1

β

)
< δk−1. (3.10)

Moreover, for any k = 1, 2, 3 . . .,

ρ
(

zk
α, zk

β

)
≥ δk for any α �= β. (3.11)

��
After this preliminary construction we pause for a moment our proof, and give

the following

Definition 3.2. A tree is a partial ordering ≤ of the set of all ordered pairs (k, α)
(k = 1, 2, 3, . . . , α ∈ Ik) which satisfies:

(T1) (k, α) ≤ (l, β) ⇒ k ≥ l.
(T2) For each (k, α) and 1 ≤ l ≤ k there exists a uniqueβ such that (k, α) ≤ (l, β).

(T3) (k, α) ≤ (k − 1, β) �⇒ ρ
(

zk
α, zk−1

β

)
< δk−1.

(T4) ρ
(

zk
α, zk−1

β

)
< (2Bn)

−1 δk−1 �⇒ (k, α) ≤ (k − 1, β).

It is not restrictive to assume

Bn ≥ 2, (3.12)

as we will do in the following; hence the constant (2Bn)
−1 appearing in the defi-

nition is ≤1.
This definition is the same given in [16], except for the restriction that our inte-

gers k, l are positive. Moreover, our tree also depends on n (through the points zk
α).

As proved in [16, Lemma 13], there exists at least one tree (for each integer n).
Actually, the same proof applies in view of (3.10), (3.11).

As in [16], we can now define the dyadic cubes:

Definition 3.3. For a fixed integer n, fix a tree, and let a0 ∈ (0, 1) be a small
constant to be determined. For k = 1, 2, 3, . . . , α ∈ Ik , set

Qk
α =

⋃

(l,β)≤(k,α)
B
(

zl
β, a0δ

l
)
. (3.13)

Proof of Theorem 3.1, second part. By definition, each Qk
α is an open set and (a)

holds. Since

B
(

zl
β, a0δ

l
)

⊆ B
(

zl
β, a0δ

)

we have

Qk
α ⊆

⋃

(l,β)≤(k,α)
B
(

zl
β, a0δ

)
.

Since zl
β ∈ ⋃∞

k=1 Ek ⊂ �n+1, choosing a0 such that

a0δ < εn+1 (3.14)
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we read that Qk
α ⊂ �n+2. Let y ∈ Qk

α and zl
β such that ρ

(
y, zl

β

)
< a0δ. By (3.6),

there exists x ∈ �n such that ρ
(

x, zl
β

)
< 2δBn+2, hence

ρ (x, y) ≤ Bn+2

(
ρ
(

x, zl
β

)
+ ρ

(
y, zl

β

))
≤ Bn+2 (2δBn+2 + a0δ)

so we can conclude that y ∈ �n+1 provided

δ
(

2B2
n+2 + a0 Bn+2

)
< 2εn . (3.15)

It is now useful to choose a0 = δ; this implies that all the conditions we will write
on a0 and δ simply ask that δ be small enough in terms of the constants εn, Bn , so
that all these conditions can be simultaneously satisfied. Nevertheless, we will keep
using both the symbols a0 and δ, to stress the different roles of these constants.

Under assumptions (3.14)–(3.15), we conclude Qk
α ⊂ �n+1, that is (b) holds.

From the definition (3.13) we also have the monotonicity of dyadic cubes:

(l, β) ≤ (k, α) �⇒ Ql
β ⊆ Qk

α. (3.16)

By (T2) and (3.16) we immediately have (c).
As in [16, (3.13)] we can prove that

(l, β) ≤ (k, α) �⇒ ρ
(

zl
β, zk

α

)
≤ 2Bn+1δ

k (3.17)

provided

δ < (2Bn)
−1 . (3.18)

This implies (d) since, for any x, y ∈ Qk
α , x ∈ B

(
zl
β, a0δ

l
)
, y ∈ B

(
zh
γ , a0δ

h
)

for some (l, β) ≤ (k, α) , (h, γ ) ≤ (k, α) we can write

ρ (x, y) ≤ Bn+1

[
ρ
(

x, zl
β

)
+ ρ

(
y, zl

β

)]

≤ Bn+1

[
a0δ

l + Bn+1

[
ρ
(

y, zh
γ

)
+ ρ

(
zl
β, zh

γ

)]]

≤ Bn+1

[
a0δ

l + Bn+1

[
a0δ

h + Bn+1

[
ρ
(

zl
β, zk

α

)
+ ρ

(
zk
α, zh

γ

)]]]

≤ Bn+1

[
a0δ

l + Bn+1

[
a0δ

h + Bn+1

[
2Bn+1δ

k + 2Bn+1δ
k
]]]

where the last inequality follows by (3.17). Since l, h ≥ k this implies (since
a0 < 1)

ρ (x, y) ≤ δk
[

Bn+1 + B2
n+1 + 4B4

n+1

]

which gives (d) with

c1 = 7B4
n+1. (3.19)

Note that with this choice of c1 we also have Qk
α ⊂ B

(
zk
α, c1δ

k
)
.
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In order to prove (e), we can now proceed proving, as [16, Lemma 15]:

If Qk
α ∩ Qk

β �= ∅ then α = β. (3.20)

Indeed, the same proof of [16, Lemma 15] applies, in view of (3.17), (b), (3.11).
More precisely, (3.20) holds provided we choose a0 and δ small enough so that

δ + a0 < (2Bn+1)
−3 . (3.21)

With (3.20) in hand let us show that (e) holds. Let l ≥ k ≥ 1, Q�
β ∩ Qk

α �= ∅, and

choose γ such that (l, β) ≤ (k, γ ) (this is possible by (T2)); then Ql
β ⊆ Qk

γ which,

together with Q�
β ∩ Qk

α �= ∅ implies Qk
α ∩ Qk

γ �= ∅. By (3.20) then α = γ , that is

Ql
β ⊆ Qk

α which gives (e).
Let us come to the proof of (f). Fix k ≥ 1 and let

Fk =
⋃

α∈Ik

Qk
α.

Fix x ∈ �n = E1; since E1 ⊆ E2 ⊆ E3 ⊆ . . ., by (3.9),

∀h ≥ 1∃zh
α such that ρ

(
x, zh

α

)
< δh . (3.22)

By (b), for any h ≥ k we have

B
(

zh
α, a0δ

h
)

⊆ Qh
α.

By (c) there exists Qk
β ⊇ Qh

α , hence

B
(

zh
α, a0δ

h
)

⊆ Qh
α ⊆ Qk

β ⊆ Fk ⊂ �n+1. (3.23)

By the triangle inequality,

B
(

zh
α, a0δ

h
)

⊆ B
(

x, Bn+1 (1 + a0) δ
h
)

≡ B. (3.24)

In turn,

B
(

x, Bn+1 (1 + a0) δ
h
)

⊆ B
(

zh
α, Bn+1

(
Bn+1 (1 + a0) δ

h + δh
))
.

For h large enough we have

Bn+1

(
Bn+1 (1 + a0) δ

h + δh
)

≤ 3B2
n+1δ

h ≤ εn, (3.25)

and the local doubling condition (2.4) implies

μ
(

B
(

zh
α, a0δ

h
))

≥ cμ (B)
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for some constant c > 0 depending on n (once we have fixed δ and a0). By (3.23)
and (3.24) the last inequality gives

μ (Fk ∩ B)

μ (B)
≥ μ

(
B
(
zh
α, a0δ

h
) ∩ B

)

μ (B)
= μ

(
B
(
zh
α, a0δ

h
))

μ (B)
≥ c > 0

and h large enough. Letting h → +∞ we find that

limsup
r→0

μ (Fk ∩ B (x, r))

μ (B (x, r))
≥ c > 0 ∀x ∈ �n, k = 1, 2, 3 . . .

By Lebesgue’s theorem on differentiation of the integral, μ (�n \ Fk) = 0. Letting

E =
∞⋃

k=1

(�n \ Fk) (3.26)

we have (f).
To prove (g) we need a refinement of the argument used in the above proof of

(f). Since �n = E1 ⊆ E2 ⊆ E3 ⊆ . . ., by (3.9) for any x ∈ EN we have that:

∀h ≥ N∃zh
α such that ρ

(
x, zh

α

)
< δh

while for any h ≥ k (3.23) and (3.24) still hold. Hence we can prove as above that

μ (Eh \ Fk) = 0 for any k, h ≥ 1. (3.27)

Let F be the null set given by
⋃

h,k≥1 (Eh \ Fk). Then fix a dyadic cube Qk
α

and pick a point x ∈ Qk
α \ F . Since x ∈ Qk

α , there exists B
(

zh
β, a0δ

h
)

� x for

some h ≥ k; since

B
(

zh
β, a0δ

h
)

⊂ B
(

zh
β, δ

h
)

⊂ Eh,

this means that x ∈ Eh; since x /∈ F , (3.27) implies that for any l ≥ 1 the point
x belongs to some Ql

β , which is (g). Clearly, the fact that the null set F appearing
in the proof of this point is possibly different from the null set E appearing in the
proof of point (f) is immaterial, since we can always relabel E the union of the two.

To prove (h), let x ∈ Qk
α \ F (with F as above) and r > 0. We need to establish

a lower bound on μ
(
B (x, r) ∩ Qk

α

) ; let us distinguish two cases:

(i) r ≤ δk . Let j ≥ k such that δ j+1 < r ≤ δ j and let Q j+2
β a cube con-

taining x (by (g) it certainly exists). By (e), Q j+2
β ⊂ Qk

α while by (d),

diam
(

Q j+2
β

)
≤ c1δ

j+2. Then Q j+2
β ⊂ B (x, r), since, for y ∈ Q j+2

β ,

ρ (x, y) ≤ Bn+1

[
ρ
(

x, z j+2
β

)
+ ρ

(
y, z j+2

β

)]
≤ 2Bn+1c1δ

j+2 ≤ δ j+1 < r

provided δ is small enough so that

2Bn+1c1δ ≤ 1. (3.28)
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Therefore

μ
(

B (x, r) ∩ Qk
α

)
≥ μ

(
Q j+2
β

)
≥ μ

(
B
(

z j+2
β , a0δ

j+2
))

≥ c0μ
(

B
(

x, δ j
))

≥ c0μ (B (x, r))

where the up to last inequality follows by the local doubling condition (2.4),
with a constant c0 only depending on n.

(ii) r > δk . Let Qk+1
β � x (by point (g) it certainly exists). Since diam

(
Qk+1
β

)
≤

c1δ
k+1,

Qk+1
β ⊂ B

(
x, c1δ

k+1
)

⊂ B (x, r)

as soon as

c1δ < 1 (3.29)

hence, by point (a),

μ
(

B (x, r) ∩ Qk
α

)
≥ μ

(
Qk+1
β

)
≥ μ

(
B
(

zk+1
β , a0δ

k+1
))

while, since zk+1
β ∈ Qk

α and diam
(
Qk
α

) ≤ c1δ
k,

μ
(

B
(

zk+1
β , c1δ

k
))

≥ μ
(

Qk
α

)
.

To conclude (3.1), which immediately give (h), we have to apply the local doubling
condition, to say that

μ
(

B
(

zk+1
β , c1δ

k
))

≤ c0μ
(

B
(

zk+1
β , a0δ

k+1
))
.

This is possible, once we have (at last) fixed δ, with some constant depending on
δ, and therefore on n. Hence Theorem 3.1 is proved.

Finally, note that in our iterative construction, at every step n we can always
choose the number δ(n) less than or equal to the number δ(n−1) chosen at the previous
step. Hence the sequence δ(n) can be assumed to be nonincreasing. ��
Remark 3.4. In the previous proof the reader could be confused by the number of
conditions we have imposed on δ and the other constants. So, let us summarize the
logical line of this procedure. First, we can assume without loss of generality that
the parameters εn, Bn of �n satisfy the following:

Bn+1 ≥ Bn ≥ 2 for every n;
εn+1 ≤ εn ≤ 1

2
for every n.

Then we have chosen

c1 = 7B4
n+1
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and a0 = δ, where δ has to satisfy conditions (3.3), (3.4), (3.5), (3.7), (3.8), (3.14),
(3.15), (3.18), (3.21), (3.28), (3.29), and also (3.32), which will be used in the proof
of Lemma 3.7. With some patience one can check that a possible choice is

δ = 1

2
min

(
εn+1,

εn

4B2
n+2

,
1

14B5
n+1

)
.

After δ has been fixed, the constants c0, c2 can be determined in terms of δ and Cn .

Point (h) of the above theorem means that each set Qk
α \ E is a space of homo-

geneous type. It is useful to reinforce the previous statement with the following:

Proposition 3.5. For each�n, k and α ∈ Ik , the set Qk
α is a space of homogeneous

type.

Here and in the following, whenever we will write that a set S ⊂ � is a space of
homogeneous type we will mean that (S, ρ, dμ) is a space of homogeneous type,
with respect to the same ρ and μ already defined in �.

Proof. The only point to prove is that if x ∈ Qk
α ∩ E (where E is like in Theorem

3.1) then

μ
(

B (x, 2r) ∩ Qk
α

)
≤ cμ

(
B (x, r) ∩ Qk

α

)
for any r > 0.

Pick y ∈ B (x, εr) ∩ (
Qk
α \ E

)
for some small ε to be fixed later. Such y certainly

exists, otherwise E would contain the open set B (x, εr)∩ Qk
α , which by (2.4) has

positive measure, while E has zero measure.
Since x ∈ Qk

α ⊂ �n+1, for r ≤ εn+1 we have B (x, 2r) ⊂ �n+2 and we can
prove

B (x, 2r) ⊂ B (y, c1r) (3.30)

with c1 = (2 + ε) Bn+2. Analogously,

B (y, c2r) ⊂ B (x, r) (3.31)

provided (ε + c2) Bn+2 < 1. Hence (3.30), (3.31) hold for suitable constants c2 <

1 < c1 and ε small enough (depending on n but not on r ), while by point (h) of
Theorem 3.1, since y ∈ Qk

α \ E we have

μ
(

B (y, c1r) ∩ Qk
α

)
≤ cμ

(
B (y, c2r) ∩ Qk

α

)

for some constant c depending on c1, c2 and any r > 0. So we conclude

μ
(

B (x, 2r) ∩ Qk
α

)
≤ cμ

(
B (x, r) ∩ Qk

α

)
for any r ≤ εn+1.

Let now r > εn+1. Pick y ∈ B (x, εn+1/2Bn+2)∩
(
Qk
α \ E

)
. By (g), for any h

there exists Qh
β � y. Since diam

(
Qh
β

)
≤ c1δ

h , for z ∈ Qh
β we have

ρ (z, x) ≤ Bn+2 (ρ (z, y)+ ρ (y, x)) ≤ Bn+2c1δ
h + εn+1

2
< εn+1
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for h large enough. Let h0 the minimum integer ≥ k such that this is true, so that
Qh0
β ⊂ B (x, εn+1). Hence

μ
(

B (x, r) ∩ Qk
α

)
≥ μ

(
Qh0
β

)

whileμ
(
B (x, 2r) ∩ Qk

α

) ≤ μ
(
Qk
α

)
. The desired conclusion follows sinceμ

(
Qk
α

)

and μ
(

Qh0
β

)
are comparable. (See the last part of the proof of Theorem 3.1). So

we are done. ��
By Theorem 3.1, point (f), we know that each family of cubes

{
Qk
α

}
α∈Ik

covers

�n \ E . Since the cubes Qk
α are open and disjoint sets, it is reasonable that they

cannot generally cover the whole �n (if, for instance, �n is a connected set, this
is impossible). On the other hand, from the proof of the theorem we can read the
following fact:

Proposition 3.6. For any �n and any k = 1, 2, 3, . . ., the closure of
⋃
α∈Ik

Qk
α

covers �n.

Proof. Let x ∈ �n . By (3.22), ∀h ≥ 1 ∃zh
αh

such that ρ
(
x, zh

αh

)
< δh . Hence

the sequence
{
zk
αk

}∞
k=1

converges to x . Moreover, the point z1
α1

belongs to Q1
α1

⊂
∪β∈I1 Q1

β; the point z2
α2

belongs to a cube Q2
α2

which is contained in some par-

ent cube Q1
γ ⊂ ∪β∈I1 Q1

β , and so on. Hence the whole sequence is contained

in ∪β∈I1 Q1
β , which means that x belongs to the closure of ∪β∈I1 Q1

β . With the

same reasoning we can say that for any positive integer h the sequence
{
zk
αk

}∞
k=h

is contained in ∪β∈Ih Qh
β , hence x belongs to the closure of ∪β∈Ih Qh

β for any
h = 1, 2, 3 . . .. ��

The next question we pose is: how many cubes form each family
{

Qk
α

}
α∈Ik

?
We expect them to be finitely many, since they are contained in �n+1, which is
bounded, they are pairwise disjoint and have essentially the same diameter. A for-
mal proof of this fact requires some care. We first need the following lemma, which
will be useful also other times.

Lemma 3.7. For any k = 1, 2, 3, . . . there exists cn,k > 0 such that

inf
z∈�n

μ
(

B
(

z, a0δ
k
))

≥ cn,k

where δ and a0 are as in Theorem 3.1.

Proof. Since �n is compact (see assumption (H4)), there exists a finite number of
points z1, . . . , zN ∈ �n such that

�n ⊂
N⋃

i=1

B
(

zi , a0δ
k
)
.
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Let now z be any point of �n; there exists i0 such that z ∈ B
(
zi0 , a0δ

k
)
. On the

other hand, for any pair of nondisjoint balls of radius r and centers z, zi0 , we have
the inclusion B

(
zi0 , r

) ⊂ B (z, Bn+1 (2Bn+1 + 1) r). Assuming

(2Bn+1 + 1) a0δ ≤ 2εn

we have, by the doubling condition (2.4)

μ
(

B
(

z, a0δ
k
))

≥ cμ
(

B
(

z, (2Bn + 1) a0δ
k
))

≥ cμ
(

B
(

zi0 , a0δ
k
))

≥ cε ≡ cn,k

having set

ε = min
i=1,2,...,N

μ
(

B
(

zi , a0δ
k
))
.

��
Proposition 3.8. For each k = 1, 2, 3, . . . , the family

{
Qk
α

}
α∈Ik

is finite.

Proof. Since
⋃
α∈Ik

Qk
α ⊂ �n+1, we have

μ

⎛

⎝
⋃

α∈Ik

Qk
α

⎞

⎠ ≤ μ (�n+1) < ∞,

(recall that any �n+1 has finite measure, as noted after Definition 2.1). Since the
Qk
α’s are pairwise disjoint and by Theorem 3.1, point (a), Qk

α ⊃ B
(
zk
α, a0δ

k
)
,

μ

⎛

⎝
⋃

α∈Ik

Qk
α

⎞

⎠ =
∑

α∈Ik

μ
(

Qk
α

)
≥
∑

α∈Ik

μ
(

B
(

zk
α, a0δ

k
))

where the last sum, by the previous Lemma, is an infinite quantity unless Ik is finite.
Therefore Ik is finite. ��

The finiteness of the covering
{

Qk
α

}
α∈Ik

of �n at any scale k is interesting for
the following consequence:

Corollary 3.9. For any k = 1, 2, 3, . . . the set

Fk =
⋃

α∈Ik

Qk
α

is a space of homogeneous type. The same conclusion holds for the union of any
subfamily of

{
Qk
α

}
α∈Ik

. The doubling constants depends on n and k.
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Proof. We have to prove that

μ (B (x, 2r) ∩ Fk) ≤ cμ (B (x, r) ∩ Fk) for any r > 0, x ∈ Fk . (3.32)

Let us first prove this inequality when x ∈ Fk \ E,where E is the null set appearing
in Theorem 3.1. So, let x ∈ Qk

α \ E for some α ∈ Ik and let r > 0. We will apply
(3.1) in Theorem 3.1, distinguishing the cases r ≤ δk and r > δk .

When r ≤ δk , by the doubling condition (2.4) we have

μ (B (x, r) ∩ Fk) ≥ μ
(

B (x, r) ∩ Qk
α

)
≥ c0μ (B (x, r))

≥ c0

Cn
μ (B (x, 2r)) ≥ c0

Cn
μ (B (x, 2r) ∩ Fk) .

When r > δk

μ (B (x, r) ∩ Fk) ≥ μ
(

B (x, r) ∩ Qk
α

)
≥ c0μ

(
Qk
α

)

≥ cn,kμ (Fk) ≥ cn,kμ (B (x, 2r) ∩ Fk)

where in the up to last inequality we have used the fact that the Qk
α are finitely

many open sets, each of positive measure, while μ (Fk) ≤ μ (�n+1) < ∞, so that
for some constant c depending on n and k (but not on α), we can write μ

(
Qk
α

) ≥
cμ (Fk).

If now x ∈ Fk ∩ E, we can repeat the same reasoning used in the proof of
Proposition 3.5 to show that (3.32) still holds. This completes the proof. ��

Summarizing several results proved so far, we can say that for any n there exists
a space of homogeneous type Fk, contained in�n+1 and essentially containing�n,

in the sense that �n \ E ⊂ Fk (by Theorem 3.1, f) and �n ⊂ Fk (by Proposition
3.6). In view of our applications to singular integrals, it is important to get a local
and more quantitative version of this result. This is contained in the following the-
orem, which is the main result in this section. Since it involves different sets �n,

here we have to add an index n to the number δ and the cubes Qk
α .

Theorem 3.10. For every n there exists Rn > 0 such that for any x ∈ �n and
R ≤ Rn there exists an open set F such that:

(i) F is a space of homogeneous type; its doubling constant depends on n but
not on R;

(ii) B (x, R) \ E ⊂ F ⊂ �n+2 (with μ (E) = 0);
(iii) B (x, R) ⊂ F;
(iv) diamF ≤ cR for some constant c depending on n but not on R;
(v) μ (F) ≤ cμ (B (x, R)) for some constant c depending on n but not on R.

The independence of the constants from R will be precious when dealing with
commutators of singular or fractional integrals with V M O functions. Clearly, the
whole �n can be covered, for any R ≤ Rn , by a finite number of balls B (xi , R),
to which this theorem is applicable.
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Remark 3.11. The reader could ask why we do not consider the set F (which sat-
isfies the simple inclusions B (x, R) ⊂ F ⊂ �n+2) instead of F (which does not
exactly contain B (x, R)). The problem with F is that, in our abstract context, it is
not obvious how to prove that it is a space of homogeneous type, too.

Proof. Fix x ∈ �n and let Rn = δ
k0
(n) for a k0 to be chosen later, but such that Rn ≤

2εn , hence B (x, R) ⊂ �n+1. For R ≤ Rn, pick k ≥ k0 such that δk+1
(n) < R ≤ δk

(n).

For these n and k, there exists α ∈ I (n)k such that (see Theorem 3.1)

x ∈ Q(n),k
α ⊂ B

(
z(n),kα , c1,(n)δ

k
(n)

)
⊂ �n+1.

For any y ∈ B (x, R) we can write

ρ
(

y, z(n),kα

)
≤ Bn+1

(
ρ (y, x)+ ρ

(
x, z(n),kα

))
< Bn+1

(
δk
(n) + c1,(n)δ

k
(n)

)

≡ hnδ
k
(n)

hence

B (x, R) ⊂ B
(

z(n),kα , hnδ
k
(n)

)

with

hn = Bn+1
(
1 + c1,(n)

)
.

Choose k0 (and consequently Rn) so that hnδ
k0
(n) ≤ 2εn, hence

B
(

z(n),kα , hnδ
k
(n)

)
⊂ �n+1

for any k ≥ k0, and so for any R ≤ Rn . Since�n+1 is covered (up to a null set) by
the union of all the dyadic cubes Q(n+1),k

β , we can define the set

F =
⋃{

Q(n+1),k
β : Q(n+1),k

β ∩ B
(

z(n),kα , hnδ
k
(n)

)
�= ∅

}

and we immediately get

B (x, R) \ E ⊂ B
(

z(n),kα , hnδ
k
(n)

)
\ E ⊂ F ⊂ �n+2,

that is (ii). Moreover, by Proposition 3.6 we also have B (x, R) ⊂ F,which is (iii).
By Corollary 3.9, F is a space of homogeneous type. Note that, for the moment,

we only know that its doubling constant depends on n and k (that is on R); we want
to prove that it actually only depends on n.

Since

diamQ(n+1),k
β < c1,(n+1)δ

k
(n+1) ≤ c1,(n+1)δ

k
(n)

(the sequence δ(n) is nonincreasing) and each of the cubes defining F intersects

B
(

z(n),kα , hnδ
k
(n)

)
, the quasitriangle inequality in �n+2 gives diamF ≤ cδk

(n) for
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some constant c depending on n, that is (iv). Finally, since B (x, R) ⊃ B
(

x, δk+1
(n)

)
,

repeated applications of the quasitriangle inequality in�n+2 give F ⊂ B (x, jn R)
for some constant jn dependent on n but not on R. Shrinking if necessary the
number Rn (that is enlarging the integer k0) we can assure that the local doubling
condition in �n+2 is applicable to the ball B (x, jn R) for R ≤ Rn and conclude
that

μ (F) ≤ μ (B (x, jn R)) ≤ cB (x, R)

for some constant c depending on n but not on R, that is (v). This also implies that

μ (F) is comparable to μ
(

Q(n+1),k
β

)
for any of the cubes defining F . Hence we

can now prove that the doubling constant of F only depends on n. Namely, revising
the last part of the proof of Corollary 3.9 we can see that inequality

c0μ
(

Qk
α

)
≥ cn,kμ (Fk)

now rewrites as

c0μ
(

Q(n+1),k
β

)
≥ cnμ (F)

and we are done. ��

4. Hölder continuous functions

In several problems related to singular or fractional integrals we will need Hölder
continuous cutoff functions adapted to concentric balls. This construction is clas-
sical and does not depend on the doubling condition, so can be performed in any
�n as in usual spaces of homogeneous type.

Fix �n . The function ρ is a quasidistance in �n, hence by known results of
Macias and Segovia [24, Thm. 2] we can build a new quasidistance d in�n, equiv-
alent to ρ in �n , and such that for some α ∈ (0, 1) d is of order α, which means
that

|d (x1, y)− d (x2, y)| ≤ cd (x1, x2)
α
{

d (x1, y)1−α + d (x2, y)1−α} (4.1)

for some constant c > 0, any x, y, z ∈ �n . Here and in the following, saying that
two functions ρ1(x, y), ρ2(x, y) are equivalent in �n means that for two positive
constants c1, c2 we have

c1ρ1(x, y) ≤ ρ2(x, y) ≤ c2ρ1(x, y) for any x, y ∈ �n .

It is worthwhile to note that the exponent α in (4.1) depends on n; from the
proof given in [24, Thm. 2] we read α = 1/ log2

(
3B2

n

)
, which is not optimal in the

sense that for Bn = 1 (that is when ρ is a distance) does not say that (4.1) holds
with α = 1.
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Let us write Bd (x, r) for the d-ball of center x and radius r . Now, for any
x0 ∈ �n with Bd (x0, 2r) ⊂ �n we can define the function

φ(x) = ψ (d (x, x0))

where

ψ (t) =
⎧
⎨

⎩

1 0 ≤ t ≤ r
2 − t/r r ≤ t ≤ 2r
0 t ≥ 2r

.

A standard computation exploiting (4.1) and the equivalence between ρ and d
allows to prove the following:

Proposition 4.1. For any �n there exists an exponent α > 0 and two constants
c1 < 1, c2 > 2, such that for any x0 ∈ �n and r > 0 with B (x, c2r) ⊂ �n there
exists a function φ with the following properties:

0 ≤ φ(x) ≤ 1;
φ(x) = 1 for x ∈ B (x0, c1r)

φ(x) = 0 for x /∈ B (x0, c2r)

|φ (x1)− φ (x2)| ≤ c

(
ρ (x1, x2)

r

)α
for any x1, x2 ∈ �n .

The cutoff function φ belongs to the space Cα
0 (�n). Note that we can build

such cutoff functions only for α ≤ α0 where the threshold α0 depends on the space
�n . We will briefly write

φ ∈ Cα
0 (�n) , B (x0, c1r) ≺ φ ≺ B (x0, c2r)

to say that φ has all the properties stated in the above proposition.
By our assumption of regularity of the measure μ, the above result [24, Thm.

2] also implies, by a fairly standard argument, that for any bounded Borel set E we
can build a Hölder continuous function which approximates in L p norm, for any
p ∈ [1,∞), the characteristic function of E . Therefore the following density result
holds:

Proposition 4.2. For any �n there exists α0 > 0, depending on n, such that for
any α ∈ (0, α0], any p ∈ [1,∞), the space Cα (�n) is dense in L p (�n). If ρ is a
distance we can take α0 = 1.

We leave the details to the interested reader. Note that this is the only point of the
theory where we use the assumption of regularity of μ; moreover, this assumption
could actually be removed. Namely, refining an argument contained in [19, Thm.
2.2.2], it is possible to prove that, under our assumptions (H1), (H2), (H4), any
positive Borel measure on � has the regularity property which is used in the proof
of this proposition.
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5. Local singular and fractional integrals

We now want to develop a theory of singular and fractional integrals in locally
homogeneous space. We are interested in situations, which typically occur when
dealing with local a priori estimates for subelliptic PDEs, where one builds singular
kernels K (x, y) which are naturally defined only locally, say for x, y belonging to
some ball B (x, R0) ⊂ �n+1 with x ∈ �n . Starting from this kernel, one builds a
new one of the kind

K̃ (x, y) = a(x)K (x, y)b(y)

where a, b are suitable cutoff functions both supported in B (x, R0). This K̃ has
the better property of being defined in the whole�n+1 ×�n+1 (except the diagonal
x = y); the integral operator with kernel K̃ can be the right object to prove a local
estimate, of L p or Cα type. We can use the Hölder continuous cutoff functions built
in the previous section to define a kernel K̃ supported in B (x, R)× B (x, R) , and
exploit the fact that B (x, R) is in turn essentially contained in a space of homo-
geneous type (see Theorem 3.10). Then, we would like to apply to the singular or
fractional integral defined by K̃ some existing results from the theory of spaces of
homogeneous type. This requires checking that K̃ satisfies globally, in the space of
homogeneous type where we have embedded it, suitable properties: standard esti-
mates, cancellation properties and so on. The following preliminary construction
and results serve to this aim. Moreover, in view of the commutator theorems we
are going to prove, we want to further shrink the support of K̃ , if necessary. This is
the reason why we introduce a second variable radius R < R0. We keep assuming
that

(
�, {�n}∞n=1 , ρ, μ

)
be a locally homogeneous space. Moreover, we make the

following:
Assumption (H7). For fixed �n,�n+1, and a fixed ball B (x, R0), with x ∈ �n

and R0 < 2εn (hence B (x, R0) ⊂ �n+1), let K (x, y) be a measurable function
defined for x, y ∈ B (x, R0), x �= y. Let R > 0 be any number satisfying

cR ≤ R0 (5.1)

for some c > 1 which will be chosen in the proof of the next Proposition; let
a, b ∈ Cα

0 (�n+1) , B (x, c1 R) ≺ a ≺ B (x, c2 R) , B (x, c3 R) ≺ b ≺ B (x, c4 R)
(see Proposition 4.1) for some fixed constants ci ∈ (0, 1) , i = 1, . . . , 4. The new
kernel

K̃ (x, y) = a(x)K (x, y)b(y) (5.2)

can be considered defined in the whole �n+1 ×�n+1 \ {x = y}. Then:

Proposition 5.1. Under Assumption (H7) we have:

(i) Assume K satisfies for some ν ∈ [0, 1) the following standard estimates:

|K (x, y)| ≤ Aρ(x, y)ν

μ (B (x, ρ(x, y)))
(5.3)
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for x, y ∈ B (x, R0) , x �= y, and

|K (x0, y)− K (x, y)| ≤ Bρ (x0, y)ν

μ(B(x0, ρ(x0, y)))

(
ρ(x0, x)

ρ(x0, y)

)β
(5.4)

for any x0, x, y ∈ B (x, R0) with ρ(x0, y) > Mρ(x0, x), some β > 0,M >

1. (M ≥ 2Bn+1, so that condition ρ(x0, y) > Mρ(x0, x) implies the compa-
rability of ρ(x0, y) and ρ(x, y)).
Then K̃ satisfies the same bound (5.3) for any x, y ∈ �n+1, x �= y and
a bound (5.4) (with a different constant B ′) for any x0, x, y ∈ �n+1, with
ρ(x0, y) > Mρ(x0, x), provided α ≥ β (where α is the Hölder exponent
related to the cutoff functions defining K̃ ); the new constant B ′ depends on
A, B and n (but not on R).

(ii) Assume K satisfies (5.3) with ν = 0 and the following cancellation property:
there exists C > 0 such that for a.e. x ∈ B (x, R0) and every ε1, ε2 such that
0 < ε1 < ε2 and Bρ′ (x, ε2) ⊂ �n+1

∣∣∣∣∣∣∣

∫

�n+1,ε1<ρ′(x,y)<ε2

K (x, y) dμ(y)

∣∣∣∣∣∣∣
≤ C, (5.5)

where ρ′ is any quasidistance equivalent to ρ in �n+1 and Bρ′ denotes ρ′-
balls.
Then K̃ satisfies a similar cancellation property (with a different constant
C ′) for a.e. x ∈ �n+1, 0 < ε1 < ε2 < ∞. The new constant C ′ depends on
A,C and n (but not on R).
The same is true if, in the condition (5.5), we replace the integration over
�n+1 with the integration over any measurable set containing B (x, R).

(iii) Assume K satisfies the bound (i) and the following convergence condition:
for a.e. x ∈ B (x, R0) such that Bρ′ (x, R) ⊂ �n+1 there exists

h R(x) ≡ lim
ε→0

∫

�n+1,ε<ρ′(x,y)<R

K (x, y)dμ(y),

where ρ′ is any quasidistance equivalent to ρ in �n+1.
Then for a.e. x ∈ �n+1, there exists

h̃(x) ≡ lim
ε→0

∫

�n+1,ρ′(x,y)>ε

K̃ (x, y) dμ(y).

Remark 5.2. The presence of a function ρ′ possibly different from ρ (but equivalent
to it) in conditions (ii)–(iii) adds flexibility to the theory: it is sometimes easier to
check these conditions for a ρ′ different from ρ. For instance, when dealing with
local estimates for operators structured on Hörmander’s vector fields, typically ρ
will be the Carnot–Carathéodory distance induced by the vector fields, while ρ′
will be the quasidistance defined by Rothschild and Stein in [26].
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Proof. The first part of (i) is obvious. To prove the second part, let us write, for
x0, x, y ∈ �n+1, ρ(x0, y) > Mρ(x0, x):

∣∣K̃ (x0, y)− K̃ (x, y)
∣∣ ≤ |a (x0) K (x0, y) b(y)− a (x0) K (x, y)b(y)|
+ |a (x0) K (x, y)b(y)− a(x)K (x, y)b(y)|
= I + I I.

By (5.4),

I ≤ |a (x0) b(y)| Bρ (x0, y)ν

μ(B(x0, ρ(x0, y)))

(
ρ(x0, x)

ρ(x0, y)

)β
(5.6)

when x0, x, y ∈ B (x, R0). Since the quantity |a (x0) b(y)| does not vanish only
if x0, y ∈ B (x, R), it is enough to consider what happens when x0, y ∈ B (x, R)
and x /∈ B (x, R). We have

ρ (x, x) ≤ Bn+1 (ρ (x, x0)+ ρ (x0, x)) ≤ Bn+1

(
1

M
ρ (x0, y)+ R

)

≤ Bn+1

(
1

M
Bn+1 (ρ (x0, x)+ ρ (x, y))+ R

)

≤ Bn+1

(
1

M
Bn+12R + R

)
≤ 2Bn+1 R

(by our assumption M ≥ 2Bn+1). Hence, if in Assumption (H7) we take

cR ≤ R0 with c > 2Bn+1, (5.7)

we have ρ (x, x) ≤ R0, and (5.6) holds for any x0, x, y ∈ �n+1 with ρ(x0, y) >
Mρ(x0, x).

Now,

I I = |a (x0)− a(x)| |K (x, y)b(y)|
by Proposition 4.1 and (5.3), for x, y ∈ B (x, R0),

≤ c

(
ρ(x0, x)

R

)α
|K (x, y)b(y)|

≤ c
Bρ (x0, y)ν

μ(B(x0, ρ(x0, y)))

(
ρ(x0, x)

R

)α (5.8)

since ρ (x0, y) is comparable to ρ(x, y).
The term I I does not vanish only if y ∈ B (x, R) and x or x0 belongs to

B (x, R).
If y, x0 ∈ B (x, R) then ρ (x0, y) ≤ 2Bn+1 R. On the other hand, condition

ρ(x0, y) > Mρ(x0, x) with M ≥ 2Bn+1 implies

ρ (x0, y) ≤ 2Bn+1ρ(x, y).
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Hence if y, x ∈ B (x, R) then ρ(x, y) ≤ 2Bn+1 R and ρ (x0, y) ≤ (2Bn+1)
2 R.

So, in any case ρ (x0, y) ≤ c1 R, and (5.8) gives

I I ≤ c
Bρ(x, y)ν

μ(B(x0, ρ(x, y)))

(
ρ(x0, x)

ρ(x0, y)

)α

≤ c
Bρ (x0, y)ν

μ(B(x0, ρ(x0, y)))

(
ρ(x0, x)

ρ(x0, y)

)β

for any β ≤ α, x, y ∈ B (x, R0). It is now enough to check what happens for
y, x0 ∈ B (x, R) and x /∈ B (x, R0). Reasoning like above, the conditions y, x0 ∈
B (x, R) imply ρ (x, x) ≤ 2Bn+1 R < R0 by (5.7), hence x /∈ B (x, R0) simply
cannot happen.

To prove (ii), let x ∈ �n+1 and consider, for any ε2 > ε1 > 0,

A ≡
∫

�n+1,ε1<ρ′(x,y)<ε2

K̃ (x, y) dμ(y)=a(x)
∫

�n+1,ε1<ρ′(x,y)<ε2

K (x, y)b(y) dμ(y).

This quantity does not vanish only if x ∈ B (x, R) ; since also b(y) does not vanish
only for y ∈ B (x, R), the integrand does not vanish only if ρ′(x, y) ≤ c′ R for
some c′. Choose the number c in (5.1) so that cR ≤ R0 implies c′ R ≤ R0 and
B
(
x, c′ R

) ⊂ �n+1. Then

A = a(x)
∫

�n+1,ε1<ρ′(x,y)<min(ε2,c′ R)

K (x, y)b(y) dμ(y)

= a(x)b(x)
∫

�n+1,ε1<ρ′(x,y)<min(ε2,c′ R)

K (x, y) dμ(y)

+
∫

�n+1,ε1<ρ′(x,y)<min(ε2,c′ R)

K (x, y) [b(y)− b(x)] dμ(y) ≡ A1 + A2.

Now by (5.5) we can bound

|A1| ≤ C |a(x)b(x)| ≤ C

while

|A2| ≤
∫

�n+1,ε1<ρ′(x,y)<min(ε2,c′ R)

|K (x, y)| c

(
ρ(x, y)

R

)α
dμ(y)

≤ c

Rα

∫

�,ρ(x,y)<c′′ R

Aρ(x, y)α

μ (B (x, ρ(x, y)))
dμ(y) ≤ c

Rα
c′′′ Rα ≡ C ′.

In the last inequality we have applied a standard estimate in spaces of homoge-
neous type (since the integral is extended to a ball centered at a point of �n+1 and
contained in �n+2 we can apply the local doubling condition):
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∫

�,ρ(x,y)<c′′ R

ρ(x, y)α

μ (B (x, ρ(x, y)))
dμ(y)

≤
∞∑

k=0

∫

�n+1,
c′′ R

2k+1 ≤ρ(x,y)< c′′ R
2k

ρ(x, y)α

μ (B (x, ρ(x, y)))
dμ(y)

≤
∞∑

k=0

(
c′′ R
2k

)α μ
(

B
(

x, c′′ R
2k

))

μ
(

B
(

x, c′′ R
2k+1

)) ≤
∞∑

k=0

Cn+1

(
c′′ R
2k

)α
= c′′′ Rα.

To prove (iii), let us consider, for x ∈ �n+1 and 0 < ε1 < ε2,

∫

�n+1,ρ′(x,y)>ε2

K̃ (x, y) dμ(y)−
∫

�n+1,ρ′(x,y)>ε1

K̃ (x, y) dμ(y)

= a(x)
∫

�n+1,ε1<ρ′(x,y)≤ε2

K (x, y)b(y)dμ(y) ≡ A (ε1, ε2, x) .

The quantity A (ε1, ε2, x) does not vanish only if x ∈ B (x, R) ; for this x and R
small enough we have B (x, R) ⊂ �n+1, hence we can write

A (ε1, ε2, x) = a(x)b(x)
∫

�n+1,ε1<ρ′(x,y)≤ε2

K (x, y)dμ(y)

+ a(x)
∫

�n+1,ε1<ρ′(x,y)≤ε2

K (x, y) [b(y)− b(x)] dμ(y)

≡ A1 (ε1, ε2, x)+ A2 (ε1, ε2, x)

and, by our assumption on K ,

lim
ε1,ε2→0

A1 (ε1, ε2, x) = 0.

On the other hand, reasoning as above, we get

|A2 (ε1, ε2, x)| ≤ c

Rα

∫

�,ρ(x,y)<c′′ε2

Aρ(x, y)α

μ (B (x, ρ(x, y)))
dμ(y) ≤ c

(ε2

R

)α

which also vanishes for ε2 → 0. So the desired limit exists. ��
Theorem 5.3. (L p estimates for singular integrals) Let K , K̃ be as in Assumption
(H7), and assume that both K and K ∗(x, y) = K (y, x) satisfy the standard esti-
mates (i) with ν = 0, the cancellation property (ii) and the convergence condition
(iii) stated in Proposition 5.1. If

T f (x) = lim
ε→0

∫

B(x,R),ρ′(x,y)>ε

K̃ (x, y) f (y)dμ(y),
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then for any p ∈ (1,∞)

‖T f ‖L p(B(x,R)) ≤ c ‖ f ‖L p(B(x,R)) .

The constant c depends on p, n and the constants of K involved in the assumptions
(but not on R).

Moreover, T satisfies a weak 1–1 estimate:

μ ({x ∈ B (x, R) : |T f (x)| > t}) ≤ c

t
‖ f ‖L1(B(x,R)) for any t > 0.

Theorem 5.4. (Cη estimates for singular integrals) Let K , K̃ be as in Assumption
(H7), with K satisfying the standard estimates (i) with ν = 0, the cancellation
property (ii) and the convergence condition (iii) stated in Proposition 5.1. Assume
that, in addition, the kernel K satisfies the condition

h̃(x) ≡ lim
ε→0

∫

ρ′(x,y)>ε

K̃ (x, y)dμ(y) ∈ Cγ (�n+1) (5.9)

for some γ > 0 (where ρ′ is the same appearing in the assumed convergence
condition (iii)). If

T f (x) = lim
ε→0

∫

B(x,R),ρ′(x,y)>ε

K̃ (x, y) f (y)dμ(y),

then

‖T f ‖Cη(B(x,R)) ≤ c ‖ f ‖Cη(B(x,H R)) (5.10)

for any positive η < min (α, β, γ ) and some constant H > 1 independent of R.
(Recall that α is the Hölder exponent related to the cutoff functions defining K̃ , β
appears in the standard estimates (i) and γ is the number in (5.9)).

The constant c depends on η, n, R, the constants involved in the assumptions
on K , and the Cγ norm of h̃.

Note that, unlike Theorem 5.3, Theorem 5.4 does not require any condition on K ∗.

Proof of Theorems 5.3 and 5.4. By Theorem 3.10 there exists a space of homoge-
neous type F such that

B (x, R) \ E ⊂ F ⊂ �n+1

and the doubling constant of F only depends on n. By our assumptions on K and
Proposition 5.1, the operator T satisfies all the assumptions of Theorem 11.2 (about
singular integrals in spaces of homogeneous type), so that

‖T f ‖L p(B(x,R)) ≤ ‖T f ‖L p(F) ≤ c ‖ f ‖L p(F)
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with c depending on p, n and the constants involved in the assumptions about K .
Applying the inequality to f ∈ L p (B (x, R)) (having set f = 0 outside this ball),
we get

‖T f ‖L p(B(x,R)) ≤ c ‖ f ‖L p(B(x,R)).

The same argument gives the weak 1–1 estimate for T , so Theorem 5.3 is proved.
For Theorem 5.4 a similar argument applies; we now apply Theorem 11.3 and

get

‖T f ‖Cη(F) ≤ c ‖ f ‖Cη(F)

with c depending on η, n, the constants involved in the assumptions about K , the
Cγ norm of h̃, and also diamF , that is R. Moreover, B (x, R) ⊂ F hence

‖T f ‖Cη(B(x,R)) ≤ ‖T f ‖Cη
(
F
) = ‖T f ‖Cη(F) ≤ c ‖ f ‖Cη(F) .

A difference with the L p case is that now we cannot set f = 0 outside the ball
B (x, R) preserving its Hölder continuity, therefore we can just write

‖T f ‖Cη(B(x,R)) ≤ c ‖ f ‖Cη(B(x,H R))

since, for some H > 1 independent of R, we have F ⊂ B (x, H R), as seen in the
proof of Theorem 3.10. ��
Remark 5.5. (Estimates for Cη

0 functions) In the applications of this theory to local
a priori estimates for PDEs, the function f is usually compactly supported, so that
we can apply (5.10) to f ∈ Cη

0 (B (x, R)), getting the more appealing inequality

‖T f ‖Cη(B(x,R)) ≤ c ‖ f ‖Cη(B(x,R)) .

Moreover, applying this inequality to functions f ∈ Cη
0 (B (x, r)) with r < R we

can get a bound

‖T f ‖Cη(B(x,r)) ≤ c ‖ f ‖Cη(B(x,r))

with c depending on R but not on r .

Remark 5.6. (Checking assumption (5.9)) Assumption (5.9) can be the most trou-
blesome to check in concrete applications (apart from classical cases in which h̃
is zero, or is constant). In some applications to subelliptic equations, the kernel
K̃ (x, y) happens to be a perturbation of a simpler kernel which has vanishing
integral over spherical shells; in these cases, one can prove that the limit

lim
ε→0

∫

ρ′(x,y)>ε

K̃ (x, y)dμ(y)

equals the integral of a nonsingular kernel satisfying standard estimates (5.3)–(5.4)
for some ν > 0. It is then helpful to recall that such an integral always belongs to a
Hölder space, as will follow from Theorem 5.8, since it can be regarded as T (1),
where the constant 1 is Hölder continuous and T is a fractional integral.
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Theorem 5.7. (L p−Lq estimate for fractional integrals) Let K , K̃ be as in Assump-
tion (H7), with K satisfying the growth condition

0 ≤ K (x, y) ≤ c

μ (B (x, ρ(x, y)))1−ν (5.11)

for some ν ∈ (0, 1) , c > 0, any x, y ∈ B (x, R0) , x �= y. If

Iν f (x) =
∫

B(x,R)

K̃ (x, y) f (y)dμ(y)

then, for any p ∈ (
1, 1

ν

)
, 1

q = 1
p − ν there exists c such that

‖Iν f ‖Lq (B(x,R)) ≤ c ‖ f ‖L p(B(x,R))

for any f ∈ L p (B (x, R)). The constant c depends on p, n, and the constants of
K involved in the assumptions (but not on R).

Proof. This theorem follows from the analog result which holds in spaces of homo-
geneous type, that is Theorem 11.4, by a similar argument to that used in the proof
of Theorem 5.3. ��

The analog Cη estimate for fractional integrals is better stated under slightly
different assumptions on the kernel. In the applications of the theory that we have
in mind, where the measure of a ball is equivalent to a fixed power of the radius,
both the theorems will be applicable.

Theorem 5.8. (Cη estimate for fractional integrals) Let K , K̃ be as in Assumption
(H7), with K satisfying (5.3) and (5.4) for some ν ∈ (0, 1) , β > 0. If

Iν f (x) =
∫

B(x,R)

K̃ (x, y) f (y)dμ(y),

then, for any η < min (α, β , ν)

‖Iν f ‖Cη(B(x,R)) ≤ c ‖ f ‖Cη(B(x,H R)).

The constant c depends on η, n, R and the constants of K involved in the assump-
tions; the number H only depends on n.

Reasoning as in Remark 5.5, we can also say that for functions f ∈
Cη

0 (B (x, r)) with r < R the following bound holds

‖Iν f ‖Cη(B(x,r)) ≤ c ‖ f ‖Cη(B(x,r))

with c depending on R but not on r .

Proof. This theorem follows from Proposition 5.1 and the analog result which holds
in spaces of homogeneous type, that is Theorem 11.5, by an argument similar to
that used in the proof of the Cη case in Theorem 5.4. ��
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6. Local and global BMO and V MO spaces

Let
(
�, {�n}∞n=1 , ρ, μ

)
be a locally homogeneous space.

Definition 6.1. (Local B M O and V M O spaces) For any function u ∈ L1 (�n+1),
and r > 0, with r ≤ εn, set

η∗
u,�n ,�n+1

(r) = sup
t≤r

sup
x0∈�n

1

μ (B (x0, t))

∫

B(x0,t)

|u(x)− u B | dμ(x),

where u B = μ(B (x0, t))−1
∫

B(x0,t)
u. We say that u ∈ B M Oloc (�n,�n+1) if

‖u‖B M Oloc(�n ,�n+1) = sup
r≤εn

η∗
u,�n ,�n+1

(r) < ∞.

We say that u ∈ V M Oloc (�n,�n+1) if u ∈ B M Oloc (�n,�n+1) and

η∗
u,�n ,�n+1

(r) → 0 as r → 0.

The function η∗
u,�n ,�n+1

will be called V M O local modulus of u in (�n,�n+1).

Note that in the previous definition we integrate u over balls centered at points
of �n and enclosed in �n+1. This is a fairly natural definition if we want to avoid
integrating over the intersection B (x0, t) ∩ �n . We will need also the following
standard.

Definition 6.2. (B M O and V M O spaces over a homogeneous space) Let S be a
subset of�which is a space of homogeneous type (S can be a single cube Qk

α, or the
set F built in Theorem 3.10, or the whole

⋃
α∈Ik

Qk
α). For any function u ∈ L1 (S)

and r > 0, set

ηu,S(r) = sup
t≤r

sup
x0∈S

1

μ (B (x0, t) ∩ S)

∫

B(x0,t)∩S

|u(x)− u B∩S| dμ(x),

where u B∩S = μ(B (x0, t) ∩ S)−1
∫

B(x0,t)∩S u. We say that u ∈ B M O (S) if

‖u‖B M O(S) = sup
r>0

ηu,S (r) < ∞.

We say that u ∈ V M O (S) if u ∈ B M O (S) and ηu,S(r) → 0 as r → 0. The
function ηu,S will be called V M O modulus of u in S.

The useful link between the two notions of B M O is contained in the next Prop-
osition. Here we have to consider families of dyadic cubes adapted to different sets
�n, hence we need to add an extra index to our symbols.

Proposition 6.3. For fixed n and x ∈ �n, let B (x, R) , F be as in Theorem 3.10
(recall that F ⊂ �n+2). Let f ∈ B M Oloc (�n+2,�n+3), then

‖ f ‖B M O(F) ≤ cη∗
f,�n+2,�n+3

(cR) ≤ c ‖ f ‖B M Oloc(�n+2,�n+3)

for a constant c depending on n but independent of R. In particular, given f ∈
V M Oloc (�n+2,�n+3) , the norm ‖ f ‖B M O(F) can be taken as small as we want,
for fixed n and R small enough.
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Proof. The second inequality holds by definition, so let us prove the first. With the
notation used in the proof of Theorem 3.10, let x ∈ F, that is x ∈ Q(n+1),k

β for

some Q(n+1),k
β intersecting B

(
z(n),kα , hnδ

k
(n)

)
. In particular, x ∈ �n+2. Recall that

δk+1
(n) < R ≤ δk

(n). We want to bound, for any r > 0,

I ≡ 1

μ (B (x, r) ∩ F)

∫

B(x,r)∩F

| f (y)− c| dμ(y)

with c to be chosen later. Let us distinguish the cases:

(i) r ≤ δk
(n+1). Then

μ (B (x, r) ∩ F) ≥ μ
(

B (x, r) ∩ Q(n+1),k
β

)
≥ c0,(n+1)μ (B (x, r))

(see (3.1)), hence choosing c = fB(x,r)

I ≤ c

μ (B (x, r))

∫

B(x,r)

∣∣ f (y)− fB(x,r)
∣∣ dμ(y)

≤ cη∗
f,�n+2,�n+3

(
δk
(n+1)

)
≤ cη∗

f,�n+2,�n+3
(cn R)

since δ(n+1) ≤ δ(n) and δk+1
(n) < R.

(ii) r > δk
(n+1). Then

μ (B (x, r) ∩ F) ≥ μ
(

B (x, r) ∩ Q(n+1),k
β

)
≥ c0,(n+1)μ

(
Q(n+1),k
β

)

(see (3.1)), which in turn is equivalent to μ (F) because the two sets have compa-
rable diameters and the first is contained in the second. Here we can apply the local
doubling condition for balls of radius � δk

(n+1) centered in �n+1 and contained in
�n+2. Hence

I ≤ c

μ (F)

∫

F

| f (y)− c| dμ(y).

In turn (see the last part of the proof of Theorem 3.10), F ⊂ B (x, jn R)withμ (F)
comparable to μ (B (x, jn R)), therefore choosing c = fB(x, jn R) we get

I ≤ cη∗
f,�n+2,�n+3

(cn R)

and we are done. ��
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7. Commutators of local singular and fractional integrals with BMO
functions

The original commutator theorem we are interested in is the one proved by Coifman
et al. [18] for classical Calderón–Zygmund operators. This has been extended to
spaces of homogeneous type in [1] and [5, Thm 2.5, Thm. 3.1].

Theorem 7.1. (Commutators of local singular integrals) Let K , K̃ be as in Assump-
tion (H7), and assume that both K and K ∗(x, y) = K (y, x) satisfy the standard
estimates (i) with ν = 0, the cancellation property (ii) and the convergence condi-
tion (iii) (see Proposition 5.1). If

T f (x) = lim
ε→0

∫

B(x,R),ρ′(x,y)>ε

K̃ (x, y) f (y)dμ(y)

and, for a ∈ B M Oloc (�n+2,�n+3), we set

Ca f (x) = T (a f ) (x)− a(x)T f (x),

then for any p ∈ (1,∞) there exists c > 0 such that

‖Ca f ‖L p(B(x,R)) ≤ c ‖a‖B M Oloc(�n+2,�n+3)
‖ f ‖L p(B(x,R)).

Moreover, if a ∈ V M Oloc (�n+2,�n+3) for any ε > 0 there exists r > 0 such
that for any f ∈ L p (B (x, r)) we have

‖Ca f ‖L p(B(x,r)) ≤ ε ‖ f ‖L p(B(x,r)).

The constant c depends on p, n and the constants of K involved in the assumptions
(but not on R); the constant r also depends on the V M Oloc (�n+2,�n+3)modulus
of a.

Proof. Proceeding like in the proof of Theorem 5.3, and with the same meaning of
the symbols, we prove, applying Theorems 11.6 and 11.2 which hold in spaces of
homogeneous type, that

‖Ca f ‖L p(F) ≤ c ‖a‖B M O(F) ‖ f ‖L p(F)

for some constant c depending on p, n and the constants involved in the assump-
tions on K (but not on R); in turn, by Proposition 6.3 the last quantity is bounded
by

c ‖a‖B M Oloc(�n+2,�n+3)
‖ f ‖L p(F).

Reasoning on the support of f we get, like in the proof of Theorem 5.3,

‖Ca f ‖L p(B(x,R)) ≤ c ‖a‖B M Oloc(�n+2,�n+3)
‖ f ‖L p(B(x,R)).

To prove the second assertion, we now observe that if we apply the L p continuity
estimate

‖T f ‖L p(B(x,R)) ≤ c ‖ f ‖L p(B(x,R)) (7.1)
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to functions f ∈ L p (B (x, r)) for any r < R, we find

‖T f ‖L p(B(x,r)) ≤ c ‖ f ‖L p(B(x,r)) (7.2)

so that the same operator T is continuous on L p (B (x, r)), for any r < R, with a
constant independent of r . (Recall that the number R is involved in the definition
of T (through the cutoff functions), so that (7.2) is not the same as “(7.1) for R
small)”.

Take r so small that for x, y ∈ B (x, r) we have K̃ (x, y) = K (x, y). Then
the kernel K̃ satisfies in B (x, r) assumptions (i) in Proposition 5.1, with constants
independent of r . We can therefore apply again the commutator theorem on spaces
of homogeneous type (Theorem 11.6) to the operator T on the space F ′ built as
in Theorem 3.10 with F ′ essentially containing B (x, r) and comparable with it,
concluding that, for any f ∈ L p (B (x, r)),

‖Ca f ‖L p(B(x,r)) ≤ ‖Ca f ‖L p(F ′) ≤ c ‖a‖B M O(F ′) ‖ f ‖L p(F ′)
≤ cη∗

a,�n+2,�n+3
(cnr) ‖ f ‖L p(B(x,r))

(7.3)

where we have applied again Proposition 6.3. Since in the last inequality the con-
stants c, cn are independent of r , if a ∈ V M Oloc (�n+2,�n+3), for any ε > 0 we
can find r small enough so that cη∗

a,�n+2,�n+3
(c1r) < ε, and we are done. ��

Theorem 7.2. (Positive commutators of local fractional integrals) Let K , K̃ be as
in Assumption (H7), with K satisfying the growth condition (5.11) for some ν > 0.
If

Iν f (x) =
∫

B(x,R)

K̃ (x, y) f (y)dμ(y)

and, for a ∈ B M Oloc (�n+2,�n+3), we set

Cν,a f (x) =
∫

B(x,R)

K̃ (x, y) |a(x)− a(y)| f (y)dμ(y) (7.4)

then, for any p ∈ (
1, 1

ν

)
, 1

q = 1
p − ν there exists c such that

∥∥Cν,a f
∥∥

Lq (B(x,R)) ≤ c ‖a‖B M Oloc(�n+2,�n+3)
‖ f ‖L p(B(x,R))

for any f ∈ L p (B (x, R)).
Moreover, if a ∈ V M Oloc (�n+2,�n+3) for any ε > 0 there exists r > 0 such

that for any f ∈ L p (B (x, r)) we have
∥∥Cν,a f

∥∥
Lq (B(x,r)) ≤ ε ‖ f ‖L p(B(x,r)).

The constant c depends on p, ν, n and the constants involved in the assumptions
on K (but not on R); the constant r also depends on the V M Oloc (�n+2,�n+3)

modulus of a.
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Proof. Proceeding like in the proof of Theorem 7.1, and with the same meaning of
the symbols, applying Theorem 11.7 which holds in spaces of homogeneous type,
we get that

∥∥Cν,a f
∥∥

Lq (F) ≤ c ‖a‖B M O(F) ‖ f ‖L p(F)

≤ c ‖a‖B M Oloc(�n+2,�n+3)
‖ f ‖L p(F)

for any p ∈ (
1, 1

ν

)
, 1

q = 1
p − ν. Like in the proof of Theorem 7.1, we have

∥∥Cν,a f
∥∥

Lq (B(x,R)) ≤ c ‖a‖B M Oloc(�n+2,�n+3)
‖ f ‖L p(B(x,R)).

for any f ∈ L p (B (x, R)). The same argument in the proof of Theorem 7.1 also
gives

∥∥Cν,a f
∥∥

L p(B(x,r)) ≤ cη∗
a,�n+2,�n+3

(c1r) ‖ f ‖Lq (B(x,r))

≤ ε ‖ f ‖Lq (B(x,r))

for a ∈ V M Oloc (�n+2,�n+3), and r small enough so that cη∗
a,�n+2,�n+3

(c1r) <
ε, so we are done. ��
Theorem 7.3. (Positive commutators of nonsingular integrals)Let K , K̃ be as in
Assumption (H7), and let both K and K ∗ satisfy condition (5.4) with ν = 0. Assume
that the operator

T f (x) =
∫

B(x,R)

K̃ (x, y) f (y)dμ(y)

is continuous on L p (B (x, R)) for any p ∈ (1,∞). For a ∈ B M Oloc (�n+2,�n+3),
set

Ca f (x) =
∫

B(x,R)

K̃ (x, y) |a(x)− a(y)| f (y)dμ(y),

then

‖Ca f ‖L p(B(x,R)) ≤ c ‖a‖B M Oloc(�n+2,�n+3)
‖ f ‖L p(B(x,R))

for any f ∈ L p (B (x, R)) , p ∈ (1,∞).
Moreover, if a ∈ V M Oloc (�n+2,�n+3) for any ε > 0 there exists r > 0 such

that for any f ∈ L p (B (x, r)) we have

‖Ca f ‖L p(B(x,r)) ≤ ε ‖ f ‖L p(B(x,r)).

The constant c depends on n, the constants involved in the assumptions on K , and
the L p-L p norm of the operator T (but not explicitly on R); the constant r also
depends on the V M Oloc (�n+2,�n+3) modulus of a.

Proof. The proof is very similar to that of Theorem 7.2. Here we need to apply
Theorem 11.8 which holds in spaces of homogeneous type. ��
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Remark 7.4. The presence of an absolute value inside the integral in (7.4) and (7.5)
make the corresponding commutator theorems more flexible than the analogue for
singular integrals. Namely, if Theorems 7.2 or 7.3 applies to a kernel K , it also
applies to any other positive kernel equivalent to K , differently from what happens
for singular integrals, for which the cancellation property is crucial.

8. Local maximal operators

In this section we briefly deal with the local maximal operator in locally homoge-
neous spaces. The result is substantially already known (see for instance [23]), but
for the sake of completeness we state it explicitly with the language and notation
of this paper.

Definition 8.1. Fix�n,�n+1 and, for any f ∈ L1 (�n+1) define the local maximal
function

M�n ,�n+1 f (x) = sup
r≤rn

1

μ (B (x, r))

∫

B(x,r)

| f (y)| dμ(y) for x ∈ �n

where rn = 2εn/
(
2Bn + 3B2

n

)
, with Bn as in (2.3).

The following Vitali covering lemma holds, with the usual proof (see e.g. [17,
Chap. 3]), thanks to the fact that by our restriction on x and r we can apply the
local doubling condition to the involved balls:

Lemma 8.2. Let E be a measurable subset of �n that is covered by the union of
a family of balls B (xα, rα) centered at points of �n and with radii rα ≤ rn . Then
one can select a disjoint countable subcollection

{
B
(
xα j , rα j

)}∞
j=1

so that

E ⊂
∞⋃

j=1

B
(
xα j , Krα j

)
with K =

(
2Bn + 3B2

n

)
,

and, for some constant c depending on n,
∞∑

j=1

μ
(
B
(
xα j , rα j

)) ≥ cμ (E) .

Then, again repeating the standard proof, one can establish the following:

Theorem 8.3. Let f be a measurable function defined on �n+1. The following
hold:

(a) If f ∈ L p (�n+1) for some p ∈ [1,∞], then M�n ,�n+1 f is finite almost
everywhere in �n;

(b) if f ∈ L1 (�n+1), then for every t > 0,

μ
({

x ∈ �n : (M�n ,�n+1 f
)
(x) > t

}) ≤ cn

t

∫

�n+1

| f (y)| dμ(y);

(c) if f ∈ L p (�n+1) , 1 < p ≤ ∞, then M�n ,�n+1 f ∈ L p (�n) and
∥∥M�n ,�n+1 f

∥∥
L p(�n)

≤ cn,p ‖ f ‖L p(�n+1)
.
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9. Local Campanato spaces and integral characterization of Hölder
continuity

In several problems, it is useful to characterize Hölder continuous functions by an
integral condition instead of a pointwise one. This possibility, in the classical case,
is contained in a well-known result due to Campanato [12] and can be usefully
extended to our context.

Definition 9.1. (Local Campanato spaces) Let
(
�, {�n}∞n=1 , ρ, μ

)
be a locally

homogeneous space. For a fixed n and any function u ∈ L1 (�n+1) , α ∈ (0, 1), let

Mα,�n ,�n+1u(x) = sup
x∈�n ,r≤εn

inf
c∈R

1

rα |B (x, r)|
∫

B(x,r)

|u(y)− c| dμ(y).

Set

Lα (�n,�n+1) =
{

u ∈ L1 (�n+1) : Mα,�n ,�n+1u < ∞
}
.

If u ∈ Cα (�n+1) then clearly

Mα,�n ,�n+1 u ≤ |u|Cα(�n+1) .

The class Lα (�n,�n+1) can be seen as an abstract and local version of the
classical Campanato class L(q,λ) (�), with � bounded domain of R

N , q = 1 and
λ = N + α. In [12] it is proved that a function in L(1,N+α) (�) is a.e. equal to a
Cα-Hölder continuous function in �, provided � satisfies a regularity condition
of the kind

|� ∩ B (x, r)| ≥ cr N for any x ∈ �, r ≤ diam�.

We will prove a similar result in our context. Apart from the more abstract setting,
the basic difference is that we do not ask any condition on the size of�∩ B (x, r);
on the other hand, we content with a local result, namely:

Theorem 9.2. (Compare with [12, Theorem I.2]) For any u ∈ Lα (�n,�n+1),
there exists a function ũ ∈ Cα (�n) such that ũ is a.e. equal to u in �n. Namely,
there exist c, K > 1, such that for any x, y ∈ �n with we have

|̃u(x)− ũ(y)| ≤ cMα,�n ,�n+1 u · ρ(x, y)α (9.1)

if Kρ(x, y) ≤ εn, and

|̃u(x)− ũ(y)| ≤ c
{

Mα,�n ,�n+1 u + ‖u‖L1(�n+1)

}
ρ(x, y)α (9.2)

if Kρ(x, y) > εn .

The constant c in (9.1) depends on Bn,Cnbut not on εn, while K = 2Bn .
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Remark 9.3. The possibility of extending the bound (9.1) to any x, y ∈ �n (sup-
pressing the term ‖u‖L1(�n+1)

in (9.2)) relies on some global property of the quasi-
distance. For instance, if for every couple of points x, y ∈ �n and any positive
integer N we can find a chain of points x0 = x, x1, x2, . . . , xN = y such that
ρ
(
x j , x j−1

)
is comparable to ρ(x, y)/N , this is the case. In our abstract setting,

this cannot be generally assured.

To shorten notation, throughout this section we will write Mu in place of
Mα,�n ,�n+1 u.

For u ∈ Lα (�n,�n+1) , x0 ∈ �n, r ≤ εn, let c (x0, r, u) be the constant such
that

∫

B(x0,r)

|u(y)− c (x0, r, u)| dμ(y) = inf
c∈R

∫

B(x0,r)

|u(y)− c| dμ(y).

Then:

Lemma 9.4. (Compare with [12, Lemma [I.1]]) For every u ∈ Lα (�n,�n+1)

there exists c1 depending on n, α such that
∣∣∣c (x0, r, u)− c

(
x0,

r

2k
, u
)∣∣∣ ≤ c1rαMα,�n ,�n+1 u (9.3)

for every x0 ∈ �n, r ≤ εn, positive integer k.

Proof. For any x0 ∈ �n, r ≤ εn,positive integer h and y ∈ B
(

x0,
r

2h+1

)
we can

write
∣∣∣c
(

x0,
r

2h
, u
)

− c
(

x0,
r

2h+1 , u
)∣∣∣

≤
∣∣∣c
(

x0,
r

2h
, u
)

− u(y)
∣∣∣+

∣∣∣u(y)− c
(

x0,
r

2h+1 , u
)∣∣∣

and integrating over B
(

x0,
r

2h+1

)
,

∣∣∣B
(

x0,
r

2h+1

)∣∣∣
∣∣∣c
(

x0,
r

2h
, u
)

− c
(

x0,
r

2h+1 , u
)∣∣∣

≤
∫

B
(

x0,
r

2h

)

∣∣∣c
(

x0,
r

2h
, u
)

− u(y)
∣∣∣ dμ(y)

+
∫

B
(

x0,
r

2h+1

)

∣∣∣u(y)− c
(

x0,
r

2h+1 , u
)∣∣∣ dμ(y)

≤ Mu
{∣∣∣B

(
x0,

r

2h

)∣∣∣
( r

2h

)α +
∣∣∣B

(
x0,

r

2h+1

)∣∣∣
( r

2h+1

)α}
,

hence by the local doubling property
∣∣∣c
(

x0,
r

2h
, u
)

− c
(

x0,
r

2h+1 , u
)∣∣∣ ≤ rαMu

{
c

2hα
+ 1

2(h+1)α

}
= crαMu

{
1

2hα

}
.
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Setting H = ∑∞
h=0

1
2hα we have for any positive integer k

∣∣∣c (x0, r, u)− c
(

x0,
r

2k
, u
)∣∣∣ ≤

∞∑

h=0

∣∣∣c
(

x0,
r

2h
, u
)

− c
(

x0,
r

2h+1 , u
)∣∣∣ (9.4)

≤ cHrαMu.

��
Lemma 9.5. (Compare with [12, Lemma [II.1]]). For any u ∈ Lα (�n,�n+1),

sup
x∈�n

|c (x, εn, u)| < ∞.

Namely,

|c (x, εn, u)| ≤ c (n, α)
{

Mu + ‖u‖L1(�n+1)

}
.

Proof. For any fixed x ∈ �n and a.e. ξ ∈ B (x, r),

|c (x, εn, u)| ≤ |c (x, εn, u)− u (ξ)| + |u (ξ)|
hence integrating over B (x, εn) we get |c (x, εn, u)| ≤ εαn Mu + 1

|B(x,εn)|∫
�n+1

|u (ξ)| dμ (ξ) ≤ c (n, α)
{

Mu + ‖u‖L1(�n+1)

}
since infx∈�n |B (x, εn)| >

0, by Lemma 3.7. ��
Lemma 9.6. (Compare with [12, Lemma [III.1]]). For any u ∈ Lα (�n,�n+1),
any x ∈ �n the following limit is finite:

lim
r→0

c (x, r, u) ≡ ũ(x).

Moreover,

|c (x, r, u)− ũ(x)| ≤ crαMu for every r ≤ εn .

Proof. For any x ∈ �n and r ≤ εn, let k ≥ h be two positive integers, then

∣∣∣c
(

x,
r

2k
, u
)

− c
(

x,
r

2h
, u
)∣∣∣ ≤

k−1∑

i=h

∣∣∣c
(

x,
r

2i
, u
)

− c
(

x,
r

2i+1 , u
)∣∣∣

and since by (9.4) this is the remainder of a convergent series, the limit

lim
k→∞ c

(
x,

r

2k
, u
)

(9.5)

exists and is finite. Let us show that it does not depend on r . So let 0 < r1 < r2 ≤ εn,

then for any ξ ∈ B
(

x, r1
2h

)

∣∣∣c
(

x,
r1

2h
, u
)

− c
(

x,
r2

2h
, u
)∣∣∣ ≤

∣∣∣c
(

x,
r1

2h
, u
)

− u (ξ)
∣∣∣+

∣∣∣c
(

x,
r2

2h
, u
)

− u (ξ)
∣∣∣
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and integrating over B
(

x, r1
2h

)
we get

∣∣∣B
(

x,
r1

2h

)∣∣∣
∣∣∣c
(

x,
r1

2h
, u
)

− c
(

x,
r2

2h
, u
)∣∣∣

≤
( r1

2h

)α ∣∣∣B
(

x,
r1

2h

)∣∣∣ Mu +
( r2

2h

)α ∣∣∣B
(

x,
r2

2h

)∣∣∣ Mu

so that

∣∣∣c
(

x,
r1

2h
, u
)

− c
(

x,
r2

2h
, u
)∣∣∣ ≤ Mu

2αh

⎧
⎨

⎩rα1 + rα2

∣∣∣B
(

x, r2
2h

)∣∣∣
∣∣∣B

(
x, r1

2h

)∣∣∣

⎫
⎬

⎭

by the local doubling condition, for some β > 0,

≤ Mu

2αh

{
rα1 + rα2 c

(
r2

r1

)β}
→ 0

for h → ∞ and r1, r2 fixed. Hence the limit (9.5) does not depend on r .
Let, x ∈ �n and r ≤ εn,

ũ(x) = lim
h→∞ c

(
x,

r

2h
, u
)
.

Passing to the limh→∞ in (9.3) we get

|c (x, r, u)− ũ(x)| ≤ c1rαMu

which implies the existence of

lim
r→0

c (x, r, u) = ũ(x),

and the Lemma is proved. ��
Proposition 9.7. (Compare with [12, Theorem I.1]). For any u ∈ Lα (�n,�n+1),
ũ is bounded:

|̃u(x)| ≤ c (n, α)
{

Mu + ‖u‖L1(�n+1)

}
.

Moreover, ũ(x) = u(x) a.e. in �n .

Proof. By the previous Lemma we get, for any x ∈ �n

|c (x, εn, u)− ũ(x)| ≤ cεαn Mu.

Hence by Lemma 9.5

|̃u(x)| ≤ |c (x, εn, u)| + |c (x, εn, u)− ũ(x)| ≤ c (n, α)
{

Mu + ‖u‖L1(�n+1)

}

which shows the boundedness of ũ.Moreover, for any x ∈ �n and a.e. ξ ∈ B (x, r)
we have

|c (x, r, u)− u(x)| ≤ |c (x, r, u)− u (ξ)| + |u (ξ)− u(x)|
and integrating over B (x, r),
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|c (x, r, u)− u(x)| ≤ 1

|B (x, r)|
∫

B(x,r)

|c (x, r, u)− u (ξ)| dξ+

+ 1

|B (x, r)|
∫

B(x,r)

|u (ξ)− u(x)| dξ

≤ rαMu + 1

|B (x, r)|
∫

B(x,r)

|u (ξ)− u(x)| dξ.

On the other hand, since u ∈ L1 (�n+1), by Lebesgue’s theorem, for a.e. x ∈ �n,

lim
r→0

1

|B (x, r)|
∫

B(x,r)

|u (ξ)− u(x)| dξ = 0

hence for a.e. x ∈ �n we have |c (x, r, u)− u(x)| → 0 for r → 0, that is ũ(x) =
u(x) a.e. in �n . ��
Lemma 9.8. (Compare with [12, Lemma I.2]). There exists and K > 1, depending
on n, such that for any u ∈ Lα (�n,�n+1), any x0, y0 ∈ �n with Kρ (x0, y0) < εn,

we have

|c (x0, Kρ (x0, y0) , u)− c (y0, Kρ (x0, y0) , u)| ≤ cMuρ(x, y)α.

Proof. Let r = ρ (x0, y0) < εn/K and

I0 = B (x0, Kr) ∩ B (y0, Kr) ,

with K to be chosen later. For any ξ ∈ I0,

|c (x0, Kr, u)− c (y0, Kr, u)| ≤ |c (x0, Kr, u)− u (ξ)| + |c (y0, Kr, u)− u (ξ)|
and integrating over I0 we get

|I0| |c (x0, Kr, u)− c (y0, Kr, u)|
≤

∫

B(x0,Kr)

|c (x0, Kr, u)− u (ξ)| dξ +
∫

B(y0,Kr)

|c (y0, Kr, u)− u (ξ)| dξ

≤ (Kr)α Mu {|B (x0, Kr)| + |B (y0, Kr)|} .
Now, note that if K = 2Bn,

B (x0, r) ∪ B (y0, r) ⊂ I0

so that Kr ≤ εn implies, by the local doubling condition

|I0| ≥ c {|B (x0, Kr)| + |B (y0, Kr)|} ,
hence

|c (x0, Kr, u)− c (y0, Kr, u)| ≤ crαMu

and we are done. ��
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Proof of Theorem 9.2. Let x, y ∈ �n with ρ(x, y) = r and Kr ≤ εn and K as in
the previous Lemma, then

|̃u(x)− ũ(y)| ≤ |̃u(x)− c (x, Kr, u)| + |̃u(y)− c (y, Kr, u)|
+ |c (x, Kr, u)− c (y, Kr, u)| ≡ A + B + C.

Now by Lemma 9.6

A + B ≤ c (Kr)α Mu,

while by Lemma 9.8

C ≤ crαMu

so (9.1) follows. If now Kρ(x, y) > εn, by Proposition 9.7

|̃u(x)− ũ(y)| ≤ c (n, α)
{

Mu + ‖u‖L1(�n+1)

}

≤ c (n, α)
{

Mu + ‖u‖L1(�n+1)

}
ρ(x, y)α,

since ρ(x, y) > εn/K . So we are done. ��

10. Quasisymmetric quasidistances

In this section we want to extend the main results of the previous theory to the
more general case of a quasisymmetric ρ.We stress the fact that the results we are
going to extend are those of Sects. 5–9, but not the construction of dyadic cubes of
Sect. 3.

Definition 10.1. (Quasisymmetric locally homogeneous space) We make the fol-
lowing assumptions.

(K1) Let � be a set, endowed with a function ρ : �×� → [0,∞) such that, for
any x, y ∈ �, ρ(x, y) = 0 ⇔ x = y.
For any x ∈ �, r > 0, let us define the ball

B (x, r) = {y ∈ � : ρ(x, y) < r}
and the coball

B ′ (x, r) = {y ∈ � : ρ (y, x) < r} .
Let us define a topology in � saying that A ⊂ � is open if for any x ∈ A
there exists r > 0 such that B (x, r) ⊂ A. Also, we will say that E ⊂ � is
bounded if E is contained in some ball. Let us assume that:

(K2′) ρ(x, y) is a continuous function of x for any fixed y ∈ � and a continuous
function of y for any fixed x ∈ �.

(H3) Let μ be a positive regular Borel measure in �.
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(K4) Assume there exists an increasing sequence {�n}∞n=1 of bounded measurable
subsets of �, such that:

∞⋃

n=1

�n = �

and such for, any n = 1, 2, 3, . . .:
(i) the closure of �n in � is compact;

(ii) there exists εn > 0 such that

{x ∈ � : ρ(x, y) < 2εn for some y ∈ �n} ⊂ �n+1;
{x ∈ � : ρ (y, x) < 2εn for some y ∈ �n} ⊂ �n+1;

(K5) there exist An, Bn ≥ 1 such that for any x, y, z ∈ �n

ρ(x, y) ≤ Anρ (y, x) ;
ρ(x, y) ≤ Bn (ρ (x, z)+ ρ (z, y)) ;

(H6) there exists Cn > 1 such that for any x ∈ �n, 0 < r ≤ εn we have

0 < μ(B (x, 2r)) ≤ Cnμ (B (x, r)) < ∞.

(Note that for x ∈ �n and r ≤ εn we also have B (x, 2r) ⊂ �n+1).
We will say that

(
�, {�n}∞n=1 , ρ, μ

)
is a quasisymmetric locally homogeneous

space if assumptions (K1), (K2′), (H3), (K4), (K5), (H6) hold.

With a proof very similar to that of Proposition 2.4 in Sect. 2 we can prove the
following:

Proposition 10.2. Condition (K2′) is equivalent to the validity of both the following
(K2) (a) the balls and coballs are open with respect to this topology;
(K2) (b) for any x ∈ � and r > 0 the closure of B (x, r) is con-

tained in {y ∈ � : ρ(x, y) ≤ r} and the closure of B ′ (x, r) is contained in
{y ∈ � : ρ (y, x) ≤ r}.

It is also immediate to check the following

Proposition 10.3. If
(
�, {�n}∞n=1 , ρ, μ

)
is a quasisymmetric locally homogeneous

space and

ρ∗(x, y) = ρ(x, y)+ ρ (y, x) ,

then
(
�, {�n}∞n=1 , ρ

∗, μ
)

is a locally homogeneous space, and its constants can
be bounded in terms of the constants of

(
�, {�n}∞n=1 , ρ, μ

)
.

We now want to apply the results we have proved in Sects. 5–8 in order to show
that similar results hold in a quasisymmetric locally homogeneous space. Let us
discuss in detail one of these results, the others being similar.
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Theorem 10.4. (L p and Cη estimates for singular integrals) Theorems 5.3 and 5.4
still hold if

(
�, {�n}∞n=1 , ρ, μ

)
is a quasisymmetric locally homogeneous space.

Proof. The key observation is that if the kernel K (or K ∗) satisfies conditions (i),
(ii), (iii) in Proposition 5.1 with respect to ρ, it also satisfies them with respect to
any equivalent function, in particular with respect to ρ∗; this follows by a standard
computation, and implies the validity of L p estimates, by Theorem 5.3. As to Cη

estimates, let us first note that ρ and ρ∗ define the same space Cη, with equivalent
norms. Moreover, if K satisfies the condition

h̃(x) ≡ lim
ε→0

∫

ρ′(x,y)>ε

K̃ (x, y)dμ(y) ∈ Cγ (�n+1)

for some γ > 0 and some ρ′ equivalent to ρ, this ρ′ is also equivalent to ρ∗, so h̃
satisfies the Hölder continuity assumption required by Theorem 5.4, hence Hölder
estimates hold. ��

A similar argument shows that Theorems 5.7 and 5.8 still holds if
(
�, {�n}∞n=1 ,

ρ, μ) is a quasisymmetric locally homogeneous space.
To deal with commutators we first need to make the following remark about

B M O spaces.
Let us denote by Br , B̃r the balls with respect to any two equivalent functions

ρ, ρ̃ satisfying the axioms of quasisymmetric locally doubling spaces. Then for
any x0 ∈ �n, r ≤ εn, any τ ∈ R, we can write, by the equivalence of ρ, ρ̃

1

|Br (x0)|
∫

Br (x0)

|u(x)− τ | dμ(x) ≤ 1∣∣B̃c1r (x0)
∣∣

∫

B̃c2r (x0)

|u(x)− τ | dμ(x)

by the local doubling condition

≤ c3∣∣B̃c2r (x0)
∣∣

∫

B̃c2r (x0)

|u(x)− τ | dμ(x).

Choosing τ = 1∣∣B̃c2r (x0)
∣∣
∫

B̃c2r (x0)
u(x)dμ(x) and recalling that for any τ we have

1

|Br (x0)|
∫

Br (x0)

∣∣u(x)− u Br (x0)

∣∣ dμ(x) ≤ 2 · 1

|Br (x0)|
∫

Br (x0)

|u(x)− τ | dμ(x)

we get the equivalence between the norms ‖u‖B M Oloc(�n ,�n+1) with respect toρ and
ρ̃, and an analogous equivalence between V M Oloc moduli. Applying this argu-
ment to the quasisymmetric function ρ and its symmetrized ρ∗ we immediately get
that also the commutator theorems 7.1, 7.2, 7.3 still hold if

(
�, {�n}∞n=1 , ρ, μ

)
is

a quasisymmetric locally homogeneous space.
Finally, the extension of Theorem 8.3 to the setting of quasisymmetric locally

homogeneous spaces is immediate, since the maximal functions defined with
respect to equivalent quasisymmetric quasidistances are equivalent, hence the result
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in the symmetric case implies that for the quasisymmetric case. An analogous
remark applies to Theorem 9.2, since the quantities Mα,�n ,�n+1 u defined with
respect to equivalent quasidistances are equivalent.
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11. Appendix: Known results for spaces of homogeneous type

In this Appendix we collect all the results about spaces of homogeneous type which
we have applied throughout the paper. We first recall the basic

Definition 11.1. Let X be a set endowed with a function ρ : X × X → [0,∞)

such that for some constant B ≥ 1, any x, y, z ∈ X :

ρ(x, y) = 0 ⇐⇒ x = y;

ρ(x, y) = ρ (y, x) ;

ρ(x, y) ≤ B (ρ (x, z)+ ρ (z, y)).

Assume that the ρ-balls are open with respect to the topology they induce. Let μ
be a positive Borel measure on X , satisfying the doubling condition

0 < μ(B (x, 2r)) ≤ Cμ (B (x, r)) < ∞
for any x ∈ X, r > 0. Then we say that (X, ρ, μ) is a space of homogeneous type.

Dependence of the constants. We will say that some constant depends on X to
say that it depends on the constants B,C.

11.1. L p and Cα estimates for singular integrals on spaces of homogeneous type

Theorem 11.2. (L p continuity of singular integrals) Let (X, ρ, μ) be a homoge-
neous space, μ a regular measure. Let K : X × X\ {x = y} → R a kernel such
that both K and K ∗ satisfy the following conditions:

The standard estimates (5.3) with ν = 0, for any x, y ∈ X, and (5.4), for any
x0, x, y ∈ X, with ρ (x0, y) ≥ Mρ (x0, x) ,M > 1, ν = 0, β > 0;

The cancellation property
∣∣∣∣∣∣∣

∫

r≤ρ′(x,y)≤R

K (x, y)dμ(y)

∣∣∣∣∣∣∣
≤ C
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for any R > r > 0, x ∈ X, where ρ′ is any quasidistance equivalent to ρ. Let Tε
be the truncated operator defined as

Tε f =
∫

ρ′(x,y)≥ε
K (x, y) f (y)dμ(y)

for any f ∈ Cη
0 (X) (with η small enough so that Cη

0 (X) is dense in L p for p ∈
[1,∞)). Then Tε can be extended to a linear continuous operator from L p into L p

for every p ∈ (1,∞), and

‖Tε f ‖L p ≤ c ‖ f ‖L p

where the constant c depends on X, p and all the constants involved in the assump-
tions, but not on ε. Moreover, if for a.e. x ∈ X there exists the limit

lim
ε→0

∫

ρ′(x,y)≥ε
K (x, y)dμ(y),

then the above L p estimate holds also for the operator

T f (x) = lim
ε→0

∫

ρ′(x,y)≥ε
K (x, y) f (y)dμ(y).

Finally, the operator T satisfies a weak (1, 1)-estimate:

μ ({x ∈ X : |T f (x)| > t}) ≤ c

t
‖ f ‖L1(X) .

The above result follows, for instance, from the results contained in [16] and [17];
see also [5, Thm. 4.1, Thm. 4.5] where this theorem is explicitly derived from the
aforementioned results.

Theorem 11.3. (Cα continuity of singular integrals) (See [7, Thm. 2.7]). Let
(X, ρ, μ) be a bounded homogeneous space, and let K : X × X\ {x = y} → R a
kernel satisfying the following conditions:

The standard estimate (5.3) with ν = 0, any x, y ∈ X, and (5.4) with ν = 0,
for any x0, x, y ∈ X, with ρ (x0, y) ≥ Mρ (x0, x) ,M > 1, β > 0;

The cancellation property: for any r > 0
∣∣∣∣∣∣∣

∫

ρ′(x,y)≥r

K (x, y)dμ(y)

∣∣∣∣∣∣∣
≤ C,

where ρ′ is any quasidistance on X, equivalent to ρ. Assume that for every f ∈
Cα(X) and x ∈ X the following limit exists:

T f (x) = lim
ε→0

Tε f (x) = lim
ε→0

∫

ρ′(x,y)≥ε
K (x, y) f (y)dy
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and T (1) (x) ∈ Cη(X), for some η ∈ (0, 1] Then the operator T is continuous on
Cα(X); more precisely:

|T f |Cα(X) ≤ c ‖ f ‖Cα(X) for every α < β, α ≤ η

for some constant c depending on X, α,and all the constants involved in the assump-
tions (recall β is the exponent appearing in assumption (5.4)). Moreover,

‖T f ‖L∞ ≤ c ‖ f ‖Cα(X) ,

where c also depending on diamX.

11.2. L p and Cα estimates for fractional integrals on spaces of homogeneous type

Theorem 11.4. (L p estimate for fractional integrals) Let (X, ρ, μ) be a space of
homogeneous type, and for α ∈ (0, 1), let

0 ≤ Kα(x, y) ≤ C

μ (B (x, ρ(x, y)))1−α for x �= y, Kα (x, x) = 0

Iα f (x) =
∫

X

Kα(x, y) f (y)dμ(y)

for any measurable f : X → R for which the integral makes sense. Then, for
any p ∈ (

1, 1
α

)
, 1

q = 1
p − α there exists a constant depending on X, α, p and the

constant C in the assumptions on Kα, such that

‖Iα f ‖Lq (X) ≤ c ‖ f ‖L p(X)

for any f ∈ L p(X).

The above result is due to Gatto and Vagi, see [21,22].

Theorem 11.5. (Cα estimate for fractional integrals) (See [7, Thm 2.11]). Let
(X, ρ, μ) be a bounded space of homogeneous type, and let K (x, y) be a ker-
nel satisfying for some ν ∈ (0, 1) the standard estimates (5.3) for any x, y ∈ X,
and (5.4), for any x0, x, y ∈ X, with ρ (x0, y) ≥ Mρ (x0, x) ,M > 1, β > 0; let

Iν f (x) =
∫

X

Kν(x, y) f (y)dμ(y).

Then, for any α < min (β , ν) we have

‖Iν f ‖Cα(X) ≤ c ‖ f ‖Cα(X) .

The constant c depends on X, α,diamX, and the constants involved in the assump-
tions on K .

The above two results about fractional integrals are proved in the quoted papers
under some additional assumptions on the space (e.g., the absence of “atoms” that
is points of positive measure); however, these statements can be easily proved in
full generality.
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11.3. Commutator theorems

The following result has been proved in [5, Thm 2.5, Thm. 3.1]:

Theorem 11.6. (Commutators of singular integrals) Let (X, ρ, μ) be a homoge-
neous space and let all the assumptions of Theorem 11.2 be in force. Let

T f (x) = lim
ε→0

∫

X,ρ′(x,y)>ε

K (x, y) f (y)dμ(y)

and, for a ∈ B M O(X) let

Ca f (x) = T (a f ) (x)− a(x)T f (x).

Then, for any p ∈ (1,∞)

‖Ca f ‖L p(X) ≤ c ‖a‖B M O(X) ‖ f ‖L p(X)

for some constant c depending on X, p, and the constants involved in the assump-
tions on K , but not on f, a.

Next, let us recall the analog results for fractional or more general type of non-
singular integral operators. A key point in the following result is the presence of an
absolute value inside the integral, which is allowed by the positivity of the kernel:

Theorem 11.7. (Commutators of fractional integrals) Let (X, ρ, μ) be a homoge-
neous space and let Kα, Iα be as in Theorem 11.4. For any function a ∈ B M O(X),
let

Ca f (x) =
∫

X

Kα(x, y) |a(x)− a(y)| f (y)dμ(y)

be the “positive commutator” of Iα with a. Then for any p ∈ (
1, 1

α

)
, 1

q = 1
p − α

there exists c = c (X, α, p) such that

‖Ca f ‖Lq (X) ≤ c ‖a‖B M O(X) ‖ f ‖L p(X) .

The above theorem has been first proved in [4, Thm. 2.11] under an extra
assumption on the space (X, ρ) and then, in this full generality, in [1, Thm. 3.3,
Thm. 3.7].

An analog result holds for any abstract operator with positive kernel, which we
already know to be L p continuous:

Theorem 11.8. (See [1, Thm. 0.1]). Let (X, ρ, μ) be a homogeneous space and
K (x, y) be a nonnegative kernel such that the operator

T f (x) =
∫

X\{x}
K (x, y) f (y) dμ(y)
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maps L p(X) into L p(X) for p ∈ (1,∞) . Also, assume that both K and K ∗ satisfy
the standard estimate (5.4) for ν = 0, some β > 0,M > 1, any x0, x, y ∈ X with
ρ(x0, y) > Mρ(x0, x). For a ∈ B M O(X), let

Ca f (x) =
∫

X

K (x, y) |a(x)− a(y)| f (y)dμ(y).

Then there exists c = c(X, p) such that

‖Ca f ‖L p(X) ≤ c ‖a‖B M O(X) ‖ f ‖L p(X) .
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