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Abstract

This is the text prepared for a minicourse held at Ghent University
(Belgium) on January 8-10, 2020, on the topic of Rothschild-Stein lift-
ing and approximation theorem, originally contained in [44]. Besides the
original papers where the results discussed here were achieved, which will
be quoted in the following, this presentation is based on material taken
from [11] and [13].
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In these lessons I will address the topic of Rothschild-Stein’s “lifting and
approximation”theorem. This is an important result contained in the famous
paper [44], 1976, by Linda Rothschild and Elias Stein on Acta Mathematica. In
that deep paper, lifting and approximation are just one of the techniques used
to solve a major problem, related to the proof of “natural”a priori estimates for
Hörmander operators. Therefore, an introduction to the lifting theorem should
begin with some background about Hörmander operators, and a summary of
the main researches that were carried out in the decade spanning from the
cornerstone 1967 paper [33] by Lars Hörmander until Rothschild-Stein’s paper.
This is the content of lesson 1. In lesson 2 I will give a general overview,
without proofs, of Rothschild-Stein’s paper, dealing not only with the lifting
and approximation result, but also with the scope for which this was originally
designed. In lesson 3 I will discuss some further developments of the theory of
Hörmander operators which are somehow related to lifting and approximation
techniques: both direct applications of Rothschild-Stein’s results, and extensions
of that result, motivated by some further researches. This exposition will not be
exhaustive of the subject: I will just choose some topics, reflecting my research
interests. Finally, in lesson 4, I will describe the general strategy and some steps
of the proof of the lifting theorem, following the alternative approach given by
Hörmander-Melin in [34], 1978.
Besides the original papers where the results discussed here were achieved,

which will be quoted in the following, this presentation is based on much material
taken from [11] and [13].
Acknowledgements. I wish to thank Michael Ruzhansky for his kind invi-

tation to Ghent University and all the people of Ghent Analysis & PDE group for
their keen attention, stimulating conversations, warm hospitality, and delicious
cakes.

1 Context and prerequisites

1.1 Hörmander operators

Hörmander operators are an important class of linear elliptic-parabolic degen-
erate partial differential operators with smooth coeffi cients, which have been
intensively studied since the late 1960’s and are still an active field of research.
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To give a brief introduction to this context, let us start recalling the definition
of hypoelliptic operator.

Definition 1.1 A differential operator L with C∞ (Ω) coeffi cients (Ω open
subset of Rn) is said hypoelliptic in Ω if, for any open set Ω′ ⊂ Ω and any
distribution u ∈ D′ (Ω′), Lu ∈ C∞ (Ω′)⇒ u ∈ C∞ (Ω′).

A famous result due to Hörmander, [33] 1967, provides an almost complete
characterization of second order hypoelliptic operators with real coeffi cients:

Lu =

n∑
i,j=1

aij (x) ∂2
xixju+

n∑
k=1

bk (x) ∂xku+ c (x)u

Hörmander’s preliminary analysis consists in proving that every hypoelliptic
operator of this kind has necessarily semi-definite principal part. Now, a sec-
ond order differential operator with semi-definite principal part can be strongly
degenerate, and degenerate operators, in general, are not regularizing. For in-
stance, a solution of uxx = 0 in R2 can be obviously discontinuous. In contrast
with this situation, already in 1934, Andrej Kolmogorov [38] exhibited an ex-
ample of operator of this type, namely

Lu = uxx − xuy − ut in R3

which, despite its degeneracy, possesses a fundamental solution Γ smooth out-
side the pole, this fact implying the hypoellipticity of L. The importance of
Hörmander’s result consists in explaining the origin of these different behav-
iours. First, Hörmander proves that if L is any linear second order operator
with nonnegative characteristic form, then in any open set where the rank of
the matrix {aij (x)} is constant, the operator (or its opposite) can be rewritten
in the form

L =

q∑
j=1

X2
j +X0 + c (1.1)

whereX0, X1, . . . , Xq are real smooth vector fields (that is, first order differential
operators):

Xj =

n∑
k=1

bjk (x) ∂xk

and c is a smooth function. Given two vector fields X,Y, one can define their
commutator

[X,Y ] = XY − Y X,
which is still a vector field. Let us consider for instance Kolmogorov’operator
in R3

Lu = uxx − xuy − ut = X2
1 +X0

with

X1 = ∂x

X0 = −x∂y − ∂t.
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Note that
[X1, X0] = −∂y.

Hence, although the operator L is written in a way that involves only 2 indipen-
dent directions in R3 (and therefore is degenerate), we see that the missing
direction is in some sense recovered by the commutator: the three vector fields

X1 = ∂x;X0 = −x∂y − ∂t; [X1, X0] = −∂y.

span R3 at every point.
More generally, we can consider the vector space of all the vector fields on

some open set Ω ⊂ Rn. Defining the Lie bracket of any two vector fields X,Y
as

[X,Y ] = XY − Y X,
this structure becomes a Lie algebra. Let us recall the standard definition of
this abstract structure:

Definition 1.2 A Lie algebra (over R) is a real vector space (g,+, ·) endowed
with another internal operation, called Lie bracket,

[·, ·] : g× g→ g

enjoying the following properties:
bilinearity:

[λX + µY,Z] = λ [X,Z] + µ [Y,Z]

anticommutativity:
[X,Y ] = − [Y,X] ;

Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for every X,Y, Z ∈ g, λ, µ ∈ R.

Given a family of vector fieldsX0, X1, ..., Xq we can consider the Lie (sub)algebra
generated by them, Lie (X0, X1, ..., Xq), that is, the smallest Lie algebra con-
taining X0, X1, ..., Xq. Roughly speaking, Lie (X0, X1, ..., Xq) consists in linear
combination of the vector fieldsX0, X1,..., Xq and their (iterated) commutators.
Evaluating the vector fields of this algebra at some point of Ω we find a

vector subspace of Rn. Then:

Definition 1.3 We say that a system of (real, smooth) vector fields X0, X1, ..., Xq

defined in some open set Ω ⊂ Rn satisfies Hörmander’s condition in Ω if the Lie
algebra generated by X0, X1, . . . , Xq span the whole Rn at every point x ∈ Ω:

dim {Xx : X ∈ Lie (X0, X1, ..., Xq)} = n ∀x ∈ Ω.
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We also say that X0, X1, ..., Xq are a system of Hörmander’s vector fields.
In this case, we say that Hörmander’s condition holds at step s (= 2, 3, ...) if

s is the maximum length of commutators required to satisfy the above condition
in Ω.

Hörmander’s theorem then reads as follows:

Theorem 1.4 (Hörmander, [33]) Let X0, X1, ..., Xq be real smooth vector
fields in some open set Ω ⊆ Rn, satisfying Hörmander’s condition in Ω and
let c ∈ C∞ (Ω). Then the operator

L =

q∑
j=1

X2
j +X0 + c,

is hypoelliptic in Ω.

We will say that such L is a Hörmander operator.
Conversely, if in an open set U ⊂ Ω the rank of the Lie algebra (that is, the

dimension of the vector space spanned by iterated commutators) is constant
and strictly less than n, then the operator L is not hypoelliptic in U . Hence
Hörmander’s condition is “almost necessary”for hypoellipticity.
For a discussion of some motivations to study operators of type (1.1), the

reader is referred for instance to [11, Chap. 2].
The vector field X0 is sometimes called drift. It is important to distinguish

between two situations:
(1). X0 is required to satisfy Hörmander’s condition in Ω, that is the set

X1, . . . , Xq alone does not fulfill the condition. In this case the drift is essential
for hypoellipticity, like the time derivative is essential for the validity of the
good properties of the heat operators.
(2). The set X1, . . . , Xq fulfills Hörmander’s condition. Then the vector field

X0, if present, plays the role of a lower order term, and is not essential. In this
situation the prototype operator to be studied is

L =

q∑
j=1

X2
j ,

which is known as “sum of squares of Hörmander’s vector fields”or “sublapla-
cian”.

Example 1.5 The simplest example of the situation (2) is the sublaplacian on
the Heisenberg group H1:

L = X2 + Y 2 ≡ (∂x + 2y∂t)
2

+ (∂y − 2x∂t)
2 (1.2)

defined in R3. Note that

X = ∂x + 2y∂t

Y = ∂y − 2x∂t

[X,Y ] = −4∂t
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span R3 at every point: we can say that X,Y satisfy Hörmander’s condition at
step 2, and by Hörmander’s theorem the operator L is hypoelliptic in R3.

Throughout these lessons we will concentrate on Hörmander operators of
the kind “sum of squares”, for the seak of simplicity. Actually, the study of
Hörmander operators with drift poses substantially harder problems.

1.2 A priori estimates

A key point in the proof of Hörmander’s theorem [33], which has an independent
interest, and has been particularly stressed in the alternative proof given some
years later by Kohn [37] and independently by Olĕınik-Radkevič [43], consists in
establishing the so-called subelliptic estimates. These estimates can be proved
by techniques of pseudodifferntial operators, and involve the standard Sobolev
spaces Hs (Rn) of fractional order, defined via Fourier transform: for every
s ∈ R we let

‖u‖Hs(Rn) =

(∫
Rn
|û (ξ)|2

(
1 + |ξ|2

)s
dξ

)1/2

The precise result reads as follows:

Theorem 1.6 (Subelliptic estimates) Let L be a Hörmander operator. There
exists ε ∈ (0, 1) such that for every couple of cutoff functions η, η′ ∈ C∞0 (Ω)
satisfying η ≺ η′ (that is, η′ = 1 on supp η) and for every σ, τ ≥ 0, there exists
a constant C > 0, such that

‖ηu‖Hσ+ε 6 C (‖η′Lu‖Hσ + ‖η′u‖H−τ )

whenever u ∈ D′ (Ω) is such that the right hand side of the above inequality is
finite.

Note that for every distribution u and cutoff function η′, there exists some
τ > 0 such that ‖η′u‖H−τ is finite. Therefore the previous estimate implies that
if Lu is smooth also u is smooth. In the special case of a “sum of squares”
operator, one can take ε = 1/s where s is step of Hörmander’s condition. In the
elliptic case, we would have s = 1 = ε, whence the term “subelliptic estimates”,
since here in general ε < 1.
For a survey on and a soft introduction to the proof of Hörmander theorem

and subelliptic estimates, see [12].
Subelliptic estimates open a natural problem. We are able to bound just a

fractional derivative of u in terms of Lu, even though the operator L is highly
regularizing. This is somehow unsatisfactory. To put it into another way: we
know that Lu ∈ C∞ (Ω) implies u ∈ C∞ (Ω) but if Lu has some partial regu-
larity, for instance Lu ∈ Hk,2 for some (but not for all) k, or if Lu ∈ Lp (Ω)
for some p 6= 2, subelliptic estimates do not allow us to deduce the natural gain
of regularity of u. The point is that we are trying to bound the usual, “Carte-
sian”derivatives for an operator which is highly anisotropic: we can expect L
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to control the specific directions given by the vector fields Xi. So perhaps the
situation could be better if we tried to bound the derivatives Xju and XiXju.
But this requires a completely different approach: the techniques of pseudodif-
ferential operators used to get subelliptic estimates are shaped on fractional
but isotropic derivatives; moreover, they privilege L2 bounds with respect to
Lp bounds for other p’s; also, if one tries to get a bound on the derivatives with
respect to the vector fields, the Hilbert space technique will offer an estimate
on first order derivatives, like in the following “energy estimate” that we can
prove for the sublaplacian on H1 (see Example 1.5):

‖Xu‖2 + ‖Y u‖2 ≤
∣∣∣∣∫ Lu · u

∣∣∣∣ ≤ ‖Lu‖ · ‖u‖ . ‖Lu‖2 + ‖u‖2 .

Instead, if one wants to prove an Lp bound on XiXju (and X0u, if the drift is
present) in terms of Lu and u, then one should mimic the techniques used to
prove Lp estimates for strong solutions to nonvariational elliptic equations. This
involves the use of representation formulas by means of fundamental solutions,
and the application of singular integral estimates (Calderón-Zygmund theory).
This program has been actually carried out, for Hörmander operators, in three
famous, outstanding papers of the mid-seventies:
1974, Folland-Stein, Comm. Pure Appl. Math., [31]
1975, Folland, Arkiv für Mat., [27]
1976, Rothschild-Stein, Acta Math., [44]
In these papers a priori estimates of the kind

‖XiXju‖p + ‖X0u‖p . ‖Lu‖p + ‖u‖p for 1 < p <∞

have been proved, at increasing levels of generality. Namely:
Step 1: 1974, Folland-Stein: the Kohn-Laplacian on Heisenberg groups (part

I) and on nondegenerate CR manifolds (part II);
Step 2: 1975, Folland: sublaplacians on homogeneous groups;
Step 3: 1976, Rothschild-Stein: general Hörmander operators.
These papers introduced a number of fundamental ideas which, still now,

represent some of the basic tools which are necessary to do research in this field.
We want to stress the fact that each further step does not make the previous

ones “useless”. Namely: the results of Step 3 extend those of Step 2, but are
also based on them; the main result of part I of Step 1 is in some sense properly
contained in Step 2; however, part II of Step 1 is not contained in Step 2; it
consists in an extension of the results of Part I to a more general situation, and
that way of reasoning can be considered as the seed of the ideas used in Step 3
to extend Step 2.
I suggest to the interested reader the survey paper [29] by Folland, 1977,

which contains a good introduction to these three papers.

1.3 Carnot groups

Let us start recalling some basic definitions and facts about Carnot groups. For
this material and for the proofs of some facts we refer to the original paper [27]
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or to Stein’s book [46, Chap.XIII, §5]; a much wider presentation of this theory
can be found in the monograph by Bonfiglioli, Lanconelli, Uguzzoni [5]; this
last book is particularly suggested to find a good wealth of explicit examples
of homogeneous groups and corresponding sublaplacians, with computations
carried out in detail.
A homogeneous group (in RN ) is a Lie group

(
RN , ◦

)
(where the group oper-

ation ◦ will be thought as a “translation”, and 0 is the identity group) endowed
with a one parameter family {Dλ}λ>0 of group automorphisms (“dilations”)
which act this way:

Dλ (x1, x2, ..., xN ) = (λα1x1, λ
α2x2, ..., λ

αNxN ) (1.3)

for suitable integers 1 = α1 6 α2 6 ... 6 αN . We will write G =
(
RN , ◦, Dλ

)
to

denote this structure. The number

Q =

N∑
i=1

αi

will be called homogeneous dimension of G. Under the change of coordinates
x = Dλ (y) the volume element transforms according to

dx = λQdy (1.4)

which justifies the name of homogeneous dimension for Q. Note that we always
have Q > N , and Q = N only if the dilations are the Euclidean ones.

In a homogeneous group the volume element is also invariant with respect to
left translation, right translation, and inversion. Moreover, it is always possible
to choose a system of coordinates in G such that u−1 = −u.

Example 1.7 The Heisenberg group Hn in R2n+1. Writing the points of R2n+1

as
(x, y, t) ≡ (x1, x2, ..., xn, y1, y2, ..., yn, t) ∈ R2n+1

we can express the group law of Hn as:

(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2 (y · x′ − x · y′))

and the dilations as
D (λ) (x, y, t) =

(
λx, λy, λ2t

)
.

The set R2n+1 with this group law is called the Heisenberg group Hn.

A homogeneous norm on G (also called a gauge on G) is a continuous func-
tion

‖·‖ : RN → [0,+∞),

such that, for some constant c > 0, for every x, y ∈ RN ,

(i) ‖x‖ = 0⇐⇒ x = 0
(ii) ‖Dλ (x)‖ = λ ‖x‖ ∀λ > 0
(iii)

∥∥x−1
∥∥ 6 c ‖x‖

(iv) ‖x ◦ y‖ 6 c (‖x‖+ ‖y‖) .
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We will always use the symbol ‖·‖ to denote a homogeneous norm, and the
symbol |·| to denote the Euclidean norm.
Concrete ways to define a homogeneous norm on G are for instance the

following:
‖x‖ = max

k=1,2,...,N
|xk|

1
αk

or

‖x‖ =

(
N∑
k=1

|xk|
Q
αk

)1/Q

.

The following property can be proved quite easily, and can be helpful to
check that some explicit function is actually a homogeneous norm:

Proposition 1.8 Let
‖·‖ : RN → [0,+∞),

be a continuous function satisfying conditions (i)-(ii) in the above definition.
Then it also satisfies (iii)-(iv). Moreover, the sets

BR =
{
x ∈ RN : ‖x‖ ≤ R

}
are compact in the Euclidean sense.

We say that a smooth function f in RN \ {0} is Dλ-homogeneous of degree
β ∈ R (or simply “β-homogeneous”) if

f (Dλ (x)) = λβf (x) ∀λ > 0, x ∈ RN \ {0} .

Given any differential operator P with smooth coeffi cients on RN , we say
that P is left invariant if for every x, y ∈ RN

P (Lyf) (x) = Ly (Pf (x))

for every smooth function f , where

Lyf (x) = f (y ◦ x) .

Analogously one defines the notion of right invariant differential operator. Also,
P is β-homogeneous (for some β ∈ R) if

P (f (Dλ (x))) = λβ (Pf) (Dλ (x))

for every smooth function f , λ > 0 and x ∈ RN .
Clearly, if P is a differential operator homogeneous of degree δ1 and f is a

homogeneous function of degree δ2, then Pf is homogeneous of degree δ2 − δ1.
For example, xi ∂

∂xj
is homogeneous of degree αj − αi.

Within the Lie algebra of all the smooth vector fields on RN we can consider
the Lie algebra g of left invariant vector fields over G. This Lie algebra is readily
seen to be finite dimensional. Namely, the canonical base of g consists in the
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N vector fields X1, X2, . . . , XN , where each Xi is, by definition, the only left
invariant vector field that agrees with ∂xi at the origin.
We assume that for some integer q < N the vector fields X1, X2, . . . , Xq are

1-homogeneous and the Lie algebra generated by them is g. If s is the maximum
length of commutators[

Xi1 ,
[
Xi2 , ...,

[
Xis−1 , Xis

]]]
, ij ∈ {1, 2, ..., q}

required to span g, then we will say that g is a stratified Lie algebra of step s,
G is a Carnot group (or a stratified homogeneous group) and the generators
X1, X2, . . . , Xq satisfy Hörmander’s condition at step s in RN .

Under these assumptions, let us denote by

L =

q∑
j=1

X2
j

the canonical sublaplacian on G. This operator is left invariant, 2-homogeneous
(with respect to the dilations on G) and, by Hörmander’s theorem, hypoelliptic
in RN .

For homogeneity reasons, the vector fields Xj have a triangular structure

Xj = ∂xj +

N∑
k=j+1

bk (x1, ..., xj) ∂xk , j = 1, 2, ..., N

with bk homogeneous polynomials, which in particular implies that, for every
φ ∈ C1

0

(
RN
)
, u ∈ C1

(
RN
)
, one has∫

RN
(Xju)φ = −

∫
RN

u (Xjφ) .

In other words, for the adjoint X∗j we simply have

X∗j = −Xj , j = 1, 2, ..., N

and in particular
L∗ = L.

Example 1.9 On the Heisenberg group Hn (see Example 1.7) the standard no-
tation for the generators is:

Xj = ∂xj + 2yj∂t

Yj = ∂yj − 2xj∂t.

Note that
[Xj , Yj ] = −4∂t

for every j = 1, 2, ..., n. The sublaplacian is

L =

n∑
j=1

(
X2
j + Y 2

j

)
and generalizes the operator in Example 1.5.
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We will make use of the Sobolev spaces W k,p
X (G) induced by the system of

vector fields
X = {X1, X2, . . . , Xq} .

More precisely, given an open subset Ω of RN , we say that f ∈W 1,p
X (Ω) (1 6 p 6

∞) if f ∈ Lp (Ω) and there exist, in weak sense, Xjf ∈ Lp (Ω) for j = 1, 2, ..., q.

Inductively, we say that f ∈W k,p
X (Ω) for k = 2, 3, ... if f ∈W k−1,p

X (Ω) and any
weak derivative of order k − 1 of f , Xj1Xj2 ...Xjk−1f , belongs to W

1,p
X (Ω). We

set

‖f‖Wk,p
X (Ω) = ‖f‖Lp(Ω) +

k∑
h=1

∑
ji=1,2,...,q

‖Xj1Xj2 ...Xjhf‖Lp(Ω) .

The convolution of two functions in G is defined as

(f ∗ g)(x) =

∫
RN

f(x ◦ y−1) g(y) dy =

∫
RN

g(y−1 ◦ x) f(y) dy, (1.5)

for every couple of functions for which the above integrals make sense. Note
that this convolution is not commutative. If P is any left invariant differential
operator,

P (f ∗ g) = f ∗ Pg (1.6)

(provided the integrals converge). Note that, differently from the Euclidean case,
we cannot interchangeably take the differential operator P on f or g. Observe
that, like P is left invariant with respect to translation, (1.6) says that it is left
invariant with respect to convolution. (Actually, to remember the positions of
the variables in definition (1.5), one can think that it is given this way just in
order for (1.6) to be true).

1.4 Sublaplacians on Carnot groups and their fundamen-
tal solutions

Let us now sketch some of the main ideas contained in Folland’s famous paper
[27], 1975. A fundamental result proved in that paper is the following:

Theorem 1.10 (Existence of a homogeneous fundamental solution) Let
L be a left invariant differential operator homogeneous of degree two on a homo-
geneous group G, such that L and L∗ are both hypoelliptic. Moreover, assume
Q ≥ 3 (where Q is the homogeneous dimension of G). Then there is a unique
translation invariant fundamental solution Γ (that is, Γ (x, y) = Γ

(
y−1 ◦ x

)
)

such that:
(a) Γ ∈ C∞

(
RN \ {0}

)
;

(b) Γ is homogeneous of degree (2−Q) ;
(c) for every u ∈ C∞0

(
RN
)

u (x) =

∫
RN

Γ(y−1 ◦ x)Lu (y) dy = L
∫
RN

Γ(y−1 ◦ x)u (y) dy (1.7)
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(actually, the identities hold for every distribution u, provided we properly in-
terpret convolutions).

The result proved by Folland is actually more general: he assumes L ho-
mogeneous of degree α > 0 and Q > α. We will not be interested in the case
α 6= 2. Note that the restriction Q > 2 is irrelevant, since the only case it
excludes is that of elliptic equations in two variables with constant coeffi cients.
This theorem in particular applies to the sublaplacian on G (for which L = L∗
is hypoelliptic, left invariant and 2-homogeneous) and from now on, for the sake
of simplicity we will restrict to the case of sublaplacians. However, note that in
the statement of the theorem nothing is required about the explicit form of the
operator L.
Let us explicitly note the relevance of the information contained in the two

identities (1.7). Namely, saying that Γ is a fundamental solution for L means
that

LΓ = δ, which implies

L(τ ∗ Γ) = τ ∗ LΓ = τ ∗ δ = τ.

However, due to the noncommutativity of the convolution on G, we cannot
write, in general L (f ∗ g) = Lf ∗g , hence the identity L(τ ∗Γ) = (Lτ)∗Γ is not
trivial, but is actually a further information which is supplied by the theorem,
which implies that we can represent any distribution τ as τ = (Lτ) ∗ Γ.

The proof of the above theorem is nonconstructive. First, applying some
deep abstract results from distribution theory, Folland shows the existence of a
“local fundamental solution”, smooth outside the pole by Hörmander’s hypoel-
lipticity theorem. Then, starting from this kernel and exploiting the dilations
on G and the homogeneity of L, he builds a new, globally defined, kernel which
also possesses the desired homogeneity. In the end, we do not have any idea of
the explicit form of this Γ. However, its abstract properties are really enough
to make the theory work very well.
First of all, let us note that since Γ is (2−Q)-homogeneous and X1, ..., Xq

are 1-homogeneous we have that

XiΓ is (1−Q) -homogeneous

XiXjΓ is (−Q) -homogeneous

(for i, j = 1, 2, ..., q). In particular, Γ and XiΓ are locally integrable, while
XiXjΓ is not.
Secondly, since X1, ..., Xq are left invariant, for every u ∈ C∞0

(
RN
)
, starting

with the representation formula (1.7) we can compute

Xju (x) =

∫
RN

(XjΓ) (y−1 ◦ x)Lu (y) dy for j = 1, 2, ..., q.

Now, if we try to compute another derivative, that is

XiXju (x) = Xi

∫
RN

(XjΓ) (y−1 ◦ x)Lu (y) dy

12



for i, j = 1, 2, ..., q, we can no longer take the derivative Xi inside the integral,
since XiXjΓ is not integrable. This is the point where the theory of singular
integrals cames in. Thanks to the homogeneity properties of Γ and the rich
underlying structure of Carnot group, the following result can be proved:

Theorem 1.11 The singular kernel K (x) = XiXjΓ (x) satisfies the following
properties:

(i)

|K (x)| ≤ c

‖x‖Q
for every x 6= 0;

(ii)

|K (x ◦ y)−K (x)|+ |K (y ◦ x)−K (x)| ≤ c ‖y‖
‖x‖Q+1

whenever ‖x‖ ≥ 2 ‖y‖;

(iii) ∫
R1<‖x‖<R2

K (x) dx =

∫
R1<‖x‖<R2

K
(
x−1

)
dx = 0

for any 0 < R1 < R2 <∞.

Moreover, for every i, j = 1, 2, ..., q there exists a constant cij such that the
following representation formula holds, for any test function u:

XiXju (x) = lim
ε→0+

∫
‖y−1◦x‖>ε

XiXjΓ(y−1 ◦ x) (Lu) (y) dy + cijLu (x) . (1.8)

Inequalities (i)-(ii) are usually called the standard estimates of singular inte-
gral kernels, while (iii) is a strong and very useful form of vanishing property for
K. Thanks to (iii) the principal value integral appearing in (1.8) can be proved
to exist, even though the integral of XiXjΓ is not absolutely convergent.
The statements contained in the above theorem are surprisingly similar to

the ones that can be proved, on the Euclidean group
(
RN ,+

)
for the second

derivatives of the fundamental solution of the classical laplacian

γ (x) =
c

|x|N

(or any other constant coeffi cient elliptic operator). In that context, the theory
of singular integrals developed by Calderón-Zygmund already in the mid 1950’s
(see e.g. [21], [23], [22]), provided Lp estimates of the kind∥∥uxixj∥∥Lp(RN )

≤ c ‖∆u‖Lp(RN ) for i, j = 1, 2, ..., N, 1 < p <∞.

Now, despite the stiking analogy between the properties of γxixj in the Euclid-
ean case, and the properties of XiXjΓ in the case of Carnot groups, getting
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analogous Lp estimates on the second order derivatives XiXju is by no means
a straightforward result. Instead, this result required the development of a sub-
stantial piece of abstract theory of singular integrals, extending the original ideas
of Calderón-Zygmund to more general contexts. This is actually another story,
that will not be told here. Let us just mention a couple of cornerstones in this
area, both dating 1971: the long paper [36] by Knapp-Stein, where the tools
necessary to get L2 estimates for singular integrals in the special context of ho-
mogeneous groups were introduced, and the monograph [25] by Coifman-Weiss,
where the basic theory of singular integrals in spaces of homogeneous type was
introduced, allowing in particular to derive Lp estimates from every p ∈ (1,∞)
from L2 estimates, once we know that the singular kernel satisfies the standard
estimates. By the way, let us recall the by now standard definition of space of
homogeneous type:

Definition 1.12 Let X be a set endowed with a quasidistance, that is a function

d : X ×X → [0,+∞)

such that

d (x, y) = 0⇔ x = y

d (x, y) = d (y, x)

d (x, y) ≤ c [d (x, z) + d (z, y)]

for some constant c ≥ 1 and every x, y, z ∈ X. The d-balls B (x, r) induce a
topology in X. Assume that the d-balls are open with respect to this topology.
Moreover, assume there exists on X a Borel measure µ such that the doubling
condition holds:

0 < µ (B (x, 2r)) ≤ cµ (B (x, r)) <∞
for some constant c > 0, every x ∈ X and r > 0. Then (X, d, µ) is called a
space of homogeneous type.

Combininig the results in Thm 1.11 with the abstract theory of singular
integrals developed within the early 1970’s, Folland could prove the a priori
estimate

‖XiXju‖Lp(RN ) ≤ c ‖Lu‖Lp(RN ) for i, j = 1, 2, ..., q,

any test function u, 1 < p < ∞, where L =
∑q
i=1X

2
i is a sublaplacian on a

Carnot group. With an extra effort, highly nontrivial in this noncommuting
context, one can also prove higher order regularity result of the following kind:

Theorem 1.13 (Local Sobolev regularity and solvability) Let L be the
sublaplacian on a Carnot group G of homogeneous dimension Q > 2, let Ω
be a bounded domain in G, let Ω′ b Ω′′ b Ω and let k ∈ N. If u is a distribution
in Ω such that Lu ∈W k,p

X (Ω) (1 < p <∞) then u ∈W k+2,p
X (Ω′′) and

‖u‖Wk+2,p
X (Ω′) ≤ c

{
‖Lu‖Wk,p

X (Ω) + ‖u‖Lp(Ω′′)

}
.
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Moreover, for every f ∈ Lp (Ω) there exists u ∈ W 2,p
X,loc(Ω) satisfying the equa-

tion Lu = f in Ω (and therefore satisfying the above a priori estimate for k = 0).

The following global result also holds:

Theorem 1.14 (Global Sobolev regularity) Under the above assumptions,
for every k ∈ N and 1 < p <∞ there exists a constant c such that if u ∈ Lp

(
RN
)

and Lu ∈W k,p
X

(
RN
)
, then u ∈W k+2,p

X

(
RN
)
and

‖u‖Wk+2,p
X (RN ) 6 c

(
‖Lu‖Wk,p

X (RN ) + ‖u‖Lp(RN )

)
. (1.9)

The above results are proved in [27], although not exactly in this form and
with this language. A detailed proof of these results will be written in [13].
Folland’s paper [27], whose results have been just summarized, represents a

major advance with respect to the previous results contained in the first part
of the paper [31] by Folland-Stein, 1974, where similar results are obtained for
the sublaplacians on the Heisenberg groups Hn, exploiting the knowledge of an
explicit fundamental solution (which was known in that case). But, besides
the more general class of groups which is considered by Folland, the research
program which is clearly stated in [27] consists in thinking that the homoge-
neous group case could be the starting point to get similar results for general
Hörmander operators, by approximation:

“In the theory of elliptic operators the constant-coeffi cient op-
erators serve as a useful class of models for the general situation:
constant-coeffi cient operators are amenable to treatment by the tech-
niques of Euclidean harmonic analysis (Fourier transforms, convolu-
tion operators, etc.), and the results obtained thereby can usually
be extended to the variable-coeffi cient case by perturbation argu-
ments. Now, a constant-coeffi cient operator is nothing more than a
translation-invariant operator on the Abelian Lie group RN . From
this point of view, it is natural to attempt to construct a class of mod-
els for non-elliptic operators of the sort discussed above among the
translation-invariant operators on certain non-Abelian Lie groups.
The Lie algebras of the groups involved should have a structure
which reflects the behavior of the commutators in the original prob-
lem and the groups themselves should admit a “harmonic analysis”
which will produce results similar to those of the Euclidean case. A
particular case of this program, has been carried out in considerable
detail in Folland-Stein [30], [31], in which sharp Lp and Lipschitz (or
Hölder) estimates for the ∂b complex on the boundary of a complex
domain with nondegenerate Levi form are obtained by using certain
left-invariant operators on the Heisenberg group as models”.
Folland, [27]

This research program has been fully carried out by Rothschild-Stein, [44],
1976, and in doing so the “lifting and approximation”technique was devised.
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2 Rothschild-Stein’s 1976 paper

Let us discuss now some ideas contained in the famous paper by Rothschild-
Stein, 1976, Acta Math. [44], where the lifting theorem firstly appeared.

2.1 The problem, and how to approach it

Here the issue is to prove Lp estimates onXiXju of the same kind already proved
on homogeneous groups, for a general Hörmander operator, that is when an
underlying group structure is lacking. Let us recall two examples of Hörmander
operators which do not admit an underlying homogeneous group:
(i) The Grushin operator:

L = ∂2
xx + x2∂2

yy. (2.1)

Here the absence of an underlying group of translation is made evident by the
fact that at points (x0, y0) with x0 6= 0 the vector fields X1 = ∂x, X2 = x∂y
are independent, while if x0 = 0 they are not. In contrast with this, if two left
invariant vector fields are independent at one point, they must be independent
everywhere. The reason is that if c1X1 + c2X2 = 0 at some point, with c1, c2
constants, then the vector field Y = c1X1 + c2X2 is also left invariant and
vanishes at some point; this implies that it vanishes everywhere. (A left invariant
vector field is uniquely determined by its value at one point).

(ii) The Mumford operator (appearing in computer vision, in the study of
the “process of random direction”, see [41]):

L = ∂t + cos θ∂x + sin θ∂y +
σ2

2
∂2
θθ.

Here the absence of a family of dilations is made evident by the fact that the
coeffi cients cos θ, sin θ are not polynomials.
Now, what does it mean to approximate a general Hörmander operator by

means of a 2-homogeneous left invariant one, according to Folland’s research
program quoted above? Let us give a simple example:

Example 2.1 The vector fields

X = ∂x + 2y∂t;Y = ∂y − 2 (ex − 1) ∂t

satisfy Hörmander’s condition at step 2; the coeffi cients of Y are not polynomials
(hence cannot be left invariant with respect to any structure of homogeneous
group), but if we take the first order expansion near x = 0, ex − 1 ∼ x, we get
the vector fields

X = ∂x + 2y∂t;Y
′ = ∂y − 2x∂t

which are 1-homogeneous and left invariant on the Heisenberg group H1. We
note that:
1) X,Y ′, [X,Y ′] are three independent vectors at any point, exactly like

X,Y, [X,Y ]. In other words, Y and Y ′ are indistinguishable from the point
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of view of the Lie algebra structure, up to the step which is required to check
Hörmander’s condition.
2) Moreover, near x = 0 we have

Y − Y ′ = −2 (ex − 1− x) ∂t.

The interesting property of this vector field is that, with respect to the homo-
geneities of the Heisenberg group (x has weight 1, t has weight 2), Y −Y ′ is “ap-
proximately homogeneous of order 0 near x = 0”, since −2 (ex − 1− x) ∼ −x2

and −x2∂t is homogeneous of degree 0, while Y ′ is homogeneous of degree 1.
This implies that if Γ is, say, a (2−Q)-homogeneous function, Y ′Γ will be
(1−Q)-homogeneous, that is more singular than Γ, while (Y − Y ′) Γ will be
approximately (2−Q)-homogeneous, that is as singular as Γ. As we will see
later in more detail, this is the key point which makes this approximation use-
ful.

Generalizing the above example, the idea is to take the Taylor polynomials
of some fixed order, in a neighborhood of some point x0, of the coeffi cients
of the vector fields Xi and to approximate each Xi with the corresponding Yi
having polynomial coeffi cients. More precisely, if the original vector fields satisfy
Hörmander’s condition at step s, this means that not more than s−1 derivatives
of the coeffi cients need to be computed when checking this condition, hence the
vector fields obtained replacing each coeffi cient with its Taylor polynomial of
degree s− 1 will satisfy the same relevant commutator relations. Actually, the
Lie algebras generated by the two sets of vector fields will be undistinguishable
up to step s.
Now, we would like that the polynomial vector fields Yi were 2-homogeneous

and left invariant with respect to some structure of homogeneous group. How-
ever we know that, on the one hand, the Lie algebras of the Xi’s and the Yi’s
have the same structure up to step s, while, on the other hand, the Lie algebra
generated by a system of homogeneous left invariant vector field always pos-
sesses some special property: for instance, its structure must be the same at
any point. But this means that we cannot hope to approximate our original
system of vector fields with a “good” one unless our original system already
satisfies some additional algebraic condition which, in particular, makes its Lie
algebra “of constant structure”. We could express more precisely this condition
saying that for any choice of N vector fields, among X1, X2, ..., Xq and their
commutators up to step s, if these vectors are independent at some point then
they must be independent at any point.
Now, Rothschild-Stein’s idea is to add extra variables to our original vector

fields, in order to fulfil this condition.

Example 2.2 Let us consider Grushin’s vector fields

X1 = ∂x, X2 = x∂y which “live” in R2

and generate a Lie algebra which has not the same structure at any point, because
X1, X0 are independent if and only if x 6= 0. Starting with these vector fields,

17



we can build the new ones

X̃1 = ∂x, X̃2 = X2 + ∂t = x∂y + ∂t which “live” in R3.

Note that X̃1, X̃0,
[
X̃1, X̃0

]
are independent at any point of R3. Their Lie al-

gebra is the same as that of the Heisenberg group H1, and actually a smooth
change of variables in R3 can turn these vector fields into the “canonical form”
X ′ = ∂x′ + 2y′∂t′ , Y

′ = ∂y′ − 2x′∂t′ of H1. The vector fields X̃1, X̃2 satisfy the
desired condition, moreover they project onto the original X1, X2, in the sense
that for any function f (x, y) which does not depend on the added t variable, we
have

X1f = X̃1f ;X2f = X̃2f.

This property should make easy to get the desired a priori estimates for XiXju

once we have proved analogous estimates for X̃iX̃ju in a higher dimensional
space.

We say that the vector fields X1, X2 have been lifted to X̃1, X̃2. In the
above simple example, the lifted vector fields are already left invariant and
homogeneous. More generally one expects to build up a two-step process:

Example 2.3 Let us consider the operator

L = X2
1 +X2

2 with

X1 = ∂x, X2 = (ex − 1) ∂y in R2.

(The vector fields have the same structure than Grushin’s vector fields, but non-
polynomial coeffi cients). Then:
First step: we lift X1, X2 to

X̃1 = ∂x, X̃2 = (ex − 1) ∂y + ∂t in R3.

Note that X̃1, X̃2,
[
X̃1, X̃2

]
are independent at any point of R3.

Second step: we approximate X̃1, X̃2 with

Y1 = ∂x, Y2 = x∂y + ∂t

which are left invariant and 1-homogeneous in H1 (up to a smooth change of
coordinates).

2.2 Lifting

It is time to reformulate the previous discussion giving a precise definition and
stating a theorem.

Definition 2.4 We say that a system of smooth vector fields Z1, Z2, ..., Zq is
free up to step s in a domain Ω of RN if the Zi’s and their commutators up to
step s do not satisfy any linear relation other than those which hold automatically
as a consequence of antisymmetry of the Lie bracket and Jacobi identity.
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To put it into another way, Z1, Z2, ..., Zq are free up to step s if and only
if the only relations of linear dependence which we can write among them and
their commutators up to step s (at any point of Ω), are those which can be
established without knowing the coeffi cients of the Zj’s.
If the vector fields satisfy Hörmander’s condition at step s and are free up

to step s, then in particular their Lie algebra has “constant structure”. As we
will see with the examples, however, the converse may not be true.

Example 2.5 1. The “usual” vector fields X,Y on H1 are free up to step 2:

X,Y, [X,Y ]

are linearly independent, and there are not other commmutators to be considered,
up to step 2.
2. The Grushin vector fields

X = ∂x, Y = x∂y

are not free at step 2 because

Y = x [X,Y ]

which is a nontrivial relation between a generator and a commutator of step 2.
In this case, as already noted, the choice of a natural basis of R2 is different
from point to point.
3. The “usual”vector fields X1, X2, Y1, Y2 on H2 (see Example 1.9) are not

free up to step 2, because

[X1, Y1] = −4∂t = [X2, Y2]

and this is a nontrivial relation between two commutators of step 2. Note that
in this case the Lie algebra actually has the same structure at any point.

We can now state the lifting theorem proved by Rothschild-Stein in [44]. To
simplify the language, we state it only for operators “sum of squares”.

Theorem 2.6 (Lifting, see [44, Thm. 4]) Let X1, ..., Xq be vector fields sat-
isfying Hörmander’s condition of step s at x0. (This clearly implies that such
property holds in a suitable neighborhood of x0). Then there exist an integer m
and vector fields X̃k defined in a neighborhood of (x0, 0) ∈ Rn+m, of the form

X̃k = Xk +

m∑
j=1

ukj (x, t1, t2, ..., tj−1) ∂tj

(k = 1, ..., q) , where the ukj’s are polynomials, such that the X̃k’s are free up to
step s and satify Hörmander’s condition at step s in this neighborhood. (Meaning
that the X̃k and their commutators up to step s span Rn+m).

The proof of this theorem is long and very technical, and for the moment we
will not say anything about it. Instead, we shall explain the role of this result
in the general strategy to get Lp estimates for general Hörmander operators.
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2.3 Approximation with left invariant vector fields

Starting from a system of vector fields X1, X2, ..., Xq which satisfy Hörmander’s
condition at step s in a neighborhood of x0 ∈ Rn, we have therefore built a new
family of “lifted”vector fields X̃1, X̃2, ..., X̃q, which are free up to step s and still
satisfy Hörmander’s condition at step s in a neighborhood of (x0, 0) ∈ Rn+m.
The second step of the theory consists in approximating these free vector fields
with homogeneous left invariant vector fields on a suitable homogeneous group.
To approach this problem, we start with some algebraic remarks. Disre-

garding the explicit form of the vector fields X̃k in cartesian coordinates, the
structure of their Lie algebra up to step s (that is, the number and type of
independent objects among the X̃k’s and their commutators up to step s) is
completely determined by the requirement of being free up to step s. This also
means that the dimension N = n + m of the lifted space only depends on the
numbers q and s.

Example 2.7 If q = 2 and s = 3 we have to consider the following independent
vector fields:

X̃1, X̃2;
[
X̃1, X̃2

]
;
[
X̃1,

[
X̃1, X̃2

]]
;
[
X̃2,

[
X̃1, X̃2

]]
.

Since these vector fields are 5, this means that N = 5. We actually don’t know
whether the higher order commutators, like[

X̃1,
[
X̃1,

[
X̃1, X̃2

]]]
vanish, or satisfy other nontrivial relations (this depends on the actual explicit
form of the vector fields in cartesian coordinates). However, up to step 3, their
algebra is determined by the numbers q = 2 and s = 3.

Now the idea is that the Lie algebra of homogeneous left invariant vector
fields Yk which (hopefully) approximate locally the X̃k’s can be defined ab-
stractly as the free Lie algebra of step s on q generators, which by definition
is the quotient of the free Lie algebra on q generators with the ideal spanned
by the commutators of length at least s+ 1. This means that the vector fields
Yk and their commutators up to step s satisfy exactly the same relations than
the X̃k’s, but moreover all their commutators of step > s vanish. The structure
of homogeneous group G in RN is, in turn, determined by that of the corre-
sponding Lie algebra. The vector fields X̃k are defined in a neighborhood of
ξ0 = (x0, 0) ∈ RN ; the vector fields Yk are defined in the whole RN , and their
behavior near the origin will approximate the behavior of the X̃k near ξ0. This
means that the approximation between X̃k and Yk is realized in a suitable system
of coordinates. The precise approximation result proved by Rothschild-Stein is
the following:

Theorem 2.8 (Approximation, see [44, Thm. 5]) Assume X̃1, X̃2,..., X̃q,
are free up to step s and satisfy Hörmander’s condition at step s in a neighbor-
hood of (x0, 0) ∈ Rn+m = RN . There exist a structure of homogeneous group G
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on RN , N = n+m, a family of homogeneous left invariant Hörmander’s vector
fields Y1, Y2, ..., Yq on G and, for any η in a neighborhood of (x0, 0), a smooth
diffeomorphism

ξ 7→ Θη (ξ)

from a neighborhood of η onto a neighborhood of the origin in G, smoothly
depending on η, such that for any smooth function f : G→ R,

X̃i (f (Θη (·))) (ξ) = (Yif +Rηi f) (Θη (ξ)) (2.2)

(i = 1, ..., q) where the “remainder”Rηi is a smooth vector fields of local degree
≤ 0 and smoothly depends on the parameter η.

The previous statement needs to be completed by the following

Definition 2.9 A differential operator P on G is said to have local degree less
than or equal to k if, after taking the Taylor expansion at 0 of its coeffi cients,
each term obtained is homogeneous of degree ≤ k.

Also, the role of Θη (ξ) is better explained by the following

Theorem 2.10 Let
ρ (ξ, η) = ‖Θη (ξ)‖ ,

where ‖·‖ is a homogeneous norm on G. Then:
(i) is a quasidistance (see Definition 1.12);
(ii) ρ is locally equivalent to the control distance induced by the vector fields

X̃1, X̃2, ..., X̃q.
(iii) The relation between ρ and the Euclidean distance is expressed by

c1 |ξ − η| ≤ ρ (ξ, η) ≤ c2 |ξ − η|1/s

where s is the step at which Hörmander’s condition holds.
(iv) Denoting the ρ-balls with the symbol B (ξ,R) we have

c1R
Q ≤ |B (ξ,R)| ≤ c2RQ

for R small enough. The same holds for the balls corresponding to the control
distance induced by the vector fields X̃1, X̃2, ..., X̃q. By comparison, recall that
for the balls corresponding to the control distance of the vector fields Y1, ..., Yq
in G one has exactly

|BY (u,R)| = cRQ.

Remark 2.11 The simple behavior of the volume of metric balls BX̃ in this
case heavily depends on the fact that the vector fields X̃i are free. As we will
see, the geometry related to a general system of Hörmander’s vector fields can
be much more involved. Note that in the original paper by Rothschild-Stein the
notion of control distance of a general system of vector fields is not present.
They just use the function ρ, the Euclidean distance, and the natural distance
on the group G, d (u, v) =

∥∥v−1 ◦ u
∥∥ .
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In order to better understand in which sense the vector field Rηi in (2.2) can
be seen as a “small remainder”, let us consider the action of X̃i on a function
f (Θη (ξ)) when f is homogeneous of some negative degree −α on G and smooth
ouside the origin, as happens when f is Folland’s fundamental solution Γ on G,
or a first-order derivative derivative YiΓ. In this case we have

Yif (−α− 1) -homogeneous, hence

|Yif (Θη (ξ))| ≤ c

‖Θη (ξ)‖α+1 =
c

ρ (ξ, η)
α+1 ,

while Rηi f is not a homogeneous function, but nevertheless, since R
η
i has local

degree ≤ 0,

|Rηi f (Θη (ξ))| ≤ c

‖Θη (ξ)‖α =
c

ρ (ξ, η)
α

for ξ near η, that is: this term is less singular than Yif .

The three theorems we have just stated (lifting; approximation; properties
of the map Θ), together with some more properties of the map Θη (ξ) proved
in [44] and which we will recall when appropriate, constitute a powerful tool,
known as “Rothschild-Stein’s lifting and approximation technique”, which has
proved to have further applications than the one for which it was originally
designed, and has actually been used by several authors, as we will illustrate
in §3. The general idea is that, thanks to this technique, the study of local
properties of a general Hörmander operator can sometimes be reduced to the
study of a homogeneous left invariant Hörmander operator, of the kind studied
by Folland in [27].

2.4 Parametrix and Lp estimates

Let us now illustrate haw this machinery is used by Rothschild-Stein in prov-
ing a priori Lp estimates for general Hörmander operators. As usual, we will
concentrate on the case of an operator “sum of squares of Hörmander’s vector
fields”(satisfying Hörmander’s condition at step s),

L =

q∑
i=1

X2
i

defined and satisfying these assumptions in a neighborhood of some x0 ∈ Rn.
We consider the corresponding lifted operator

L̃ =

q∑
i=1

X̃2
i

where the
{
X̃i

}q
i=1

are free up to step s and satisfy Hörmander’s condition at

step s in some neighborhood Ω̃ = Ω × I of (x0, 0) ∈ Rn+m = RN (Thm. 2.6).
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Let’s note that if we are able to prove Lp estimates for L̃, that is

‖u‖W 2,p

X̃
(Ω̃′) ≤ c

{∥∥∥L̃u∥∥∥
Lp(Ω̃)

+ ‖u‖Lp(Ω̃)

}
(2.3)

for 1 < p <∞, Ω̃′ b Ω̃, u ∈ C∞
(

Ω̃
)
, where

‖u‖W 2,p

X̃

=

q∑
i,j=1

∥∥∥X̃iX̃ju
∥∥∥
Lp

+

q∑
k=1

∥∥∥X̃ku
∥∥∥
Lp

+ ‖u‖Lp

then we immediately get similar estimates for L, that is the original “unlifted
operators”. Namely, applying the previous estimate to

u (x, t) = f (x)

with f ∈ C∞ (Ω) and recalling that Xif = X̃if , we get

‖f‖W 2,p

X̃
(Ω′) ≤ c

{
‖Lf‖Lp(Ω) + ‖f‖Lp(Ω)

}
.

Hence, it is enough to prove (2.3) in the lifted space. Let us consider the
structure of homogeneous group G in RN , the corresponding 1-homogeneous
left invariant vector fields Yi in G and the map Θη (ξ), defined for ξ, η in a
neighborhood of ξ0 = (x0, 0), as appear in Thm. 2.8. The operator

L =

q∑
i=1

Y 2
i

is a 2-homogeneous, left invariant, Hörmander operator on G. By Folland’s the-
ory [27], it admits a (2−Q)-homogeneous, left invariant, fundamental solution
Γ smooth outside the pole, such that

L
∫
RN

Γ
(
v−1 ◦ u

)
f (v) dv = f (u)

for every f ∈ C∞0
(
RN
)
. Starting with Γ, Rothschild-Stein build a parametrix

for L̃. Let us consider the kernel

Γ (Θη (ξ))

and let us compute
L̃ [Γ (Θη (·))] (ξ) .

Recall that, by Thm. 2.8,

X̃i [Γ (Θη (·))] (ξ) = (YiΓ +Rηi Γ) (Θη (ξ)) ,
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hence

L̃ [Γ (Θη (·))] (ξ) = (LΓ) (Θη (ξ)) +

q∑
i=1

(YiR
η
i Γ + YiR

η
i Γ +RηiR

η
i Γ) (Θη (ξ))

= δ0 ((Θη (ξ))) + (RηΓ) (Θη (ξ))

where δ0 is the Dirac mass and Rη has local degree ≤ 1, therefore, for every
ξ 6= η, ξ near η, we have

|(RηΓ) (Θη (ξ))| ≤ c

‖Θη (ξ)‖Q−1
=

c

ρ (ξ, η)
Q−1

that is, (RηΓ) (Θη (ξ)) behaves like a fractional (nonsingular, locally integrable)
integral kernel. The above computation contains the basic idea. More precisely,
we need to define the parametrix as

K (ξ, η) = a (ξ) Γ (Θη (ξ)) b (η)

with a, b cutoff functions, with support small enough so that K (ξ, η) is defined
on the whole space (recall that Θη (ξ) is only locally defined). Then we define
the integral operator

Pf (ξ) =

∫
K (ξ, η) f (η) dη

and compute, for any test function f , L̃ (Pf), finding (by the above computa-
tion)

L̃ (Pf) (ξ) = a (ξ) f (ξ) +

∫
K1 (ξ, η) f (η) dη (2.4)

whereK1 is a suitable nonsingular (locally integrable) kernel, satisfying a growth
estimate like

|K1 (ξ, η)| ≤ c

ρ (ξ, η)
Q−1

.

Since we would like to have a representation formula of f in terms of L̃f ,
modulo a nonsingular integral operator, we now transpose the identity (2.4),
finding

P ∗
(
L̃∗f

)
(ξ) = a (ξ) f (ξ) +

∫
K1 (η, ξ) f (η) dη.

Recall that L̃∗ = L̃ + (lower order terms). In our sketch of Rothschild-Stein’s
argument we decide to ignore this point and simply write L̃∗ = L̃, hence

a (ξ) f (ξ) = P ∗
(
L̃f
)

(ξ)−
∫
K1 (η, ξ) f (η) dη (2.5)

where (exchanging the variables ξ, η in the kernel of P ),

P ∗f (ξ) =

∫
a (η) Γ (Θξ (η)) b (ξ) f (η) dη.
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We are ready to take two derivatives X̃iX̃j of both sides of (2.5). For any ξ
in a small ball where a ≡ 1, we have

X̃iX̃jf (ξ) = X̃iX̃jP
∗
(
L̃f
)

(ξ)− X̃iX̃j

∫
K1 (η, ξ) f (η) dη (2.6)

≡ I + II.

Let us reflect on the two terms at the right-hand side. The term I is the second
derivative of an integral operator whose kernel behaves like the fundamental
solution Γ: morally speaking, we should get a singular integral; and this is
actually the case: exploiting again the Approximation Theorem 2.8, one can
prove

X̃iX̃jP
∗
(
L̃f
)

(ξ) = P.V.

∫
a (η) (YiYjΓ) (Θξ (η)) b (ξ) L̃f (η) dη+ (2.7)

+ cij (ξ)
(
L̃f
)

(ξ) + (remainders) ,

where (remainder) is a fractional integral operator (that is, having a locally
integrable kernel) acting on L̃f .

II = X̃iX̃j (S1f) = X̃i (S0f) .

where the kernel of S1 grows like ρ1−Q while that of S0 grows as ρ−Q: S0 is a
singular integral operator.
The expression X̃i (S0f) is an unpleasant one. However, Rothschild-Stein

are able to prove that

II = X̃j (S0f) =

q∑
k=1

S
(k)
0

(
X̃kf

)
+ S′0f (2.8)

for suitable singular integral operators S(h)
0 , S′0 of type 1. Proving this relation

of “commutation”between vector fields and integral operators is a heavy part
of the theory, involving long and subtle reasonings.
This, together with (2.6) and (2.7) shows that

X̃iX̃jf (ξ) = S0

(
L̃f
)

(ξ) + cij (ξ)
(
L̃f
)

(ξ) +

q∑
k=1

S
(k)
0

(
X̃kf

)
+ S′0f

Finally, taking Lp norms of both sides we get∥∥∥X̃iX̃jf
∥∥∥
p
≤ c

{∥∥∥S0

(
L̃f
)∥∥∥

p
+
∥∥∥L̃f (ξ)

∥∥∥
p

+

q∑
k=1

∥∥∥S(k)
0

(
X̃kf

)∥∥∥
p

+ ‖S′0f‖p

}
.

Now, suppose we know that operators of type 0 maps Lp into Lp continu-
ously, then we would conclude∥∥∥X̃iX̃jf

∥∥∥
p
≤ c

{∥∥∥L̃f∥∥∥
p

+

q∑
k=1

∥∥∥X̃kf
∥∥∥
p

+ ‖f‖p

}
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and, introducing the Sobolev norms W k,p

X̃
(with respect to vector fields),

‖f‖W 2,p

X̃

≤ c
{∥∥∥L̃f∥∥∥

Lp
+ ‖f‖W 1,p

X̃

+ ‖f‖Lp
}

which is (almost) the desired estimate.

2.5 Singular integral estimates

So we are left to check that operators of type 0 are Lp continuous. Recall that
these integral operators do not “live”on a homogeneous group but on a (local)
space of homogeneous type, however a particularly simple one, whose structure
can be seen as a small local perturbation of that of G, via the diffeomorphism
u = Θξ (η). Namely, recall that:

ρ (ξ, η) = ‖Θξ (η)‖ ,

with ‖u‖ a homogeneous norm on G, is a quasidistance, and

|B (ξ, r)| ' rQ for small r.

Moreover, the change of variables

u = Θξ (η)

within an integral, for η fixed, gives

dξ = c (η) (1 +O (‖u‖)) du

with c (η) smooth and bounded away from zero.
Just to give an idea of how these properties simplify the study of operators

of type 0, let us check the cancellation property for the kernel

YiYjΓ (Θη (ξ)) .

Let us compute ∫
R1<ρ(ξ,η)<R2

YiYjΓ (Θη (ξ)) dξ =

letting u = Θξ (η)

= c (η)

∫
R1<‖u‖<R2

YiYjΓ (u) (1 +O (‖u‖)) du =

= c (η)

∫
R1<‖u‖<R2

YiYjΓ (u) du+ c (η)

∫
R1<‖u‖<R2

YiYjΓ (u)O (‖u‖) du =

= A+B.

Now A = 0 by the vanishing property which holds in view of Folland’s study of
the homogeneous fundamental solution Γ on homogeneous groups, while

|YiYjΓ (u)O (‖u‖)| ≤ c

‖u‖Q−1
,
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hence a standard computation shows that

|B| ≤ c

uniformly in R1, R2. Hence we also have∣∣∣∣∣
∫
R1<ρ(ξ,η)<R2

YiYjΓ (Θη (ξ)) dξ

∣∣∣∣∣ ≤ c
for any R2 > R1 > 0.
The singular integral theory already used by Folland in [27], that is Coifman-

Weiss [25] results coupled with those by Knapp-Stein [36], are still adaptable to
this situation1 , and Lp continuity of operators of type 0 can be actually proved.
This concludes our account of Rothschild-Stein’s paper.

2.6 Some final comments on the quest of a-priori esti-
mates in Sobolev spaces

Let us point out some points in the paper by Rothschild-Stein which motivate
further research in this field.
1. In contrast with the result proved in the case of homogeneous groups,

here a priori estimates are only local. Proving Lp estimates for XiXju on the
whole Rn for general Hörmander operators is a diffi cult problem.

2. A priori estimates are stated, in the paper, with the language of regularity
results: “if Lu belongs to this space, then u belongs to that space”, and not
actually writing a priori estimates. If one writes down the results in terms of a
priori estimates, one finds something like:

‖f‖W 2,p
X (Br) ≤ c

{
‖Lf‖Lp(B2r) + ‖f‖W 1,p

X (B2r) + ‖f‖Lp(B2r)

}
.

Now, “taking to the left-hand side”the term ‖f‖W 1,p
X (B2r) is not a trivial task

with these Sobolev spaces. This issue has been addressed and answered many
years later, see for instance the papers [14], [15], [20].
3. So far, the best a priori estimates that we can hope to get on a domain

Ω are something like

‖f‖W 2,p
X (Ω′) ≤ c

{
‖Lf‖Lp(Ω) + ‖f‖Lp(Ω)

}
for Ω′ b Ω,

but not for Ω′ = Ω. This poses the question of proving estimates near the bound-
ary in Sobolev norms: however, this is a completely open, diffi cult, problem.
4. No explicit statement is done in [44] about the dependence of the con-

stants. For instance, one could ask: if, for a system (Xi)
q
i=1 of Hörmander’s

1We have written that the theory is adaptable, not directly applicable to our situation.
Rothschild-Stein [44] just sketch a proof of this adaptation. By now, however, this point is
clearly established on the basis of more recent theories of singular integrals.
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vector fields, we consider an operator

LA =

q∑
i,j=1

aijXiXj

where A = (aij)
q
i,j=1 is a constant, symmetric, positive matrix, so that LA

can be actually rewritten as a Hörmander operator, can we say that a-priori
estimates hold with some constants depending on the matrix A only through
the minimum and maximum eigenvalues? The answer cannot easily be read
from the paper [44]. The interested reader can find something more on this
topic in [11, §5.3], [13].

Let us also spend some words about the levels of generality of the researches
about Hörmander operators. The three papers by Folland-Stein [31], Folland
[27], Rothschild-Stein [44], besides containing fundamental ideas, results and
techniques which are currently used in the research on this field, are also rep-
resentative of three different levels of generality in the study of Hörmander
operators, which still charachterize the current research:
1) sublaplacians on Heisenberg groups;
2) Hörmander operators on homogeneous groups;
3) general Hörmander operators.
Each of these environments has its open problems and challenges. Moreover,

there are typical differences in the kind of results which are usually proved in
different contexts. For instance, in homogeneous groups one hopes to prove
global results, while for general systems of Hörmander’s vector fields one usually
confines to local results.
There is also a finer scale of generality which appears in some lines of re-

search: from the less to the more general context one can study Hörmander’s
vector fields on:

• the Heisenberg group H1;

• Heisenberg groups Hn;

• groups of Heisenberg type (also called H-groups);

• stratified groups of step 2;

• stratified (Carnot) groups;

• homogeneous (graded) Lie groups;

• Lie groups with polynomial growth;

• general Lie groups;

• general Hörmander’s vector fields.
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The possible requirement that the vector fields be free is a further assumption
which can be made both in the context of groups and in the general situation.
Another important difference in generality, which is transversal with respect

to the previous gerarchyzation, consists in studying sum of squares of Hörman-
der’s vector fields or Hörmander operators containing a drift X0. The possible
presence of the drift X0 can create deep additional problems. By the way I just
mention that Kolmogorov-Fokker-Planck operators, which constitute an impor-
tant motivation for this theory (see for instance [11, §2.1)]), actually contain
the drift.
So far, the literature devoted to general Hörmander’s vector fields is consid-

erably narrower than that dealing with Hörmander’s vector fields on some kind
of Lie group, as the literature devoted to Hörmander operators (with drift) is
considerably narrower than that dealing with sum of squares.

3 Further applications of the lifting theorem,
and variations on the theme

3.1 First alternative proofs and applications of the lifting
theorem (1970s-1980s)

The paper by Rothschild-Stein is deep, long and not easy to read. One reason
for this is that it actually contains a number of new deep ideas, expressed by
highly technical results. As a consequence, within the proofs many details are
left to the reader. The lifting theorem is one of these new deep ideas, and a result
of independent interest. In the years immediately following Rothschild-Stein’s
paper, several authors have given alternative proofs of it. In 1978 Hörmander-
Melin [34], and Goodman [32], independently, presented alternative proofs of
the lifting theorem and a pointwise version of the approximation theorem.
Folland [28], 1977, aiming to present a more transparent proof of the lifting

theorem, actually got a different result. He considered the special case of Hör-
mander’s vector fields defined in the whole Rn, whose Lie algebra is nilpotent
and homogeneous, assumptions which are fulfilled for instance by the Grushin
operator. In this situation he proved that the vector fields can be lifted to
(not necessarily free!), left invariant and homogeneous vector fields on a Carnot
group, without the necessity of introducing a remainder. In other words, in this
special case the relation (2.2) simplifies to

X̃i (f (Θη (·))) = (Yif) (Θη (·)) .

Moreover, differently from what happens in the case of general Hörmander vec-
tor fields, Folland’s lifting is global. In [28] Folland’s motivation was more the
simplification of the proof than some new application. As an application, the
Author generalizes an example, due to Baouendi-Goulaouic, of hypoelliptic, but
not analytical hypoelliptic, operator. However, in very recent years, some new
and interesting application of Folland’s lifting theorem has been given by Biagi-
Bonfiglioli [1], 2017, and [2], in the explicit construction of a global homogeneous
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fundamental solution for a class of homogeneous (but not translation invariant)
Hörmander operators on Rn, therefore generalizing Folland’s result in [27]. We
will give later some more details about these results in §3.2.4.

3.1.1 The control distance

Before going on, we need to recall the definition of control distance induced by
the vector fields X1, X2, ..., Xq in RN . This is a fairly general concept, making
sense for every system of Lipschitz continuous vector fields in a domain Ω ⊂ RN .
For any δ > 0, let Cx,y (δ) be the class of absolutely continuous mappings

ϕ : [0, 1] −→ Ω which satisfy

ϕ′ (t) =

q∑
i=1

ai (t) (Xi)ϕ(t) a.e.

with ai : [0, 1]→ R measurable functions,

|ai (t)| 6 δ a.e.

ϕ (0) = x, ϕ (1) = y.

Then define
d (x, y) = inf {δ > 0 : ∃ϕ ∈ Cx,y (δ)} ,

with the convention inf ∅ = +∞. We also define the d-balls

BX (x, r) = {y ∈ Ω : d (x, y) < r} .

WheneverX1, X2, ..., Xq is a system of (smooth) Hörmander’s vector fields in
Ω, then the famous Chow-Rashevskii connectivity theorem assures that actually
d (x, y) is finite for every couple of points. Roughly speaking, this means that
every couple of points in Ω can be joined by a curve composed of integral lines
of X1, ..., Xq.
Moreover, for Hörmander’s vector fields one can prove that locally the dis-

tance d satisfies the following relation with the Euclidean distance:

c1 |x− y| ≤ d (x, y) ≤ c2 |x− y|1/s

where s is the step of Hörmander’s condition.

If X1, X2, ..., Xq is the system of generators of a Carnot group, then the
control distance d has several extra properties:
i) d is left invariant:

d (z ◦ x, z ◦ y) = d (x, y) ∀x, y, z ∈ RN ; (3.1)

ii) d is 1-homogeneous:

d (Dλ (x) , Dλ (y)) = λd (x, y) ∀x, y ∈ RN , λ > 0;
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iii) since the Lebesgue measure in RN is the Haar measure of G, the volume
of metric balls satisfies the simple relation

|B(x, r)| = |B(0, 1)| rQ,

for every x ∈ G and r > 0, where Q is the homogeneous dimension of G;
iv) the function

‖x‖ = d (x, 0)

is a homogeneous norm. More precisely, it also satisfies the stronger properties∥∥x−1
∥∥ = ‖x‖

‖x ◦ y‖ 6 ‖x‖+ ‖y‖ . (3.2)

By contrast, we are going to show that for a general system of Hörmander
vector fields, the volume of control balls does not behave as a fixed power of the
radius.

3.1.2 Geometry of control balls and size estimates on the fundamen-
tal solution

The first important application of the lifting theorem, after Rothschild-Stein’s
paper, is contained in the fundamental paper by Nagel-Stein-Weinger [42], 1985.
Let us describe some of the ideas contained in [42].
We begin fixing some notation which will be useful in the following. Let

X1, X2, ..., Xq be a system of vector fields satisfying Hörmander’s condition at
step s in some open connected Ω of Rn. For any multiindex I = (i1, i2, ..., ik) of
length |I| = k we set:

XI = Xi1Xi2 ...Xik

and
X[I] =

[
Xi1 ,

[
Xi2 , ...

[
Xik−1 , Xik

]
...
]]
.

If I = (i1) , then
X[I] = Xi1 = XI .

As usual, X[I] can be seen either as a differential operator or as a vector
field. We will write

X[I]f

to denote the differential operator X[I] acting on a function f , and(
X[I]

)
x

to denote the vector field X[I] evaluated at the point x. By Hörmander’s con-
dition, the vectors {(

X[I]

)
x

}
|I|≤s

span Rn for any x ∈ Ω.
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The main result contained in [42] is an estimate of the volume of metric balls,
that is balls with respect to the control distance, induced by the vector fields
(see §3.1.1). In turn, this study is intertwined to the study of another notion of
distance induced by the vector fields, which we are going to recall.
By Hörmander’s condition, the vectors{(

X[I]

)
x

}
|I|≤s

span Rn for any x ∈ Ω. Hence for any absolutely continuous curve ϕ : [0, 1] −→
Ω there exist measurable functions {aI (t)}|I|≤r defined in [0, 1] such that

ϕ′ (t) =
∑
|I|≤s

aI (t)
(
X[I]

)
ϕ(t)

a.e. t ∈ [0, 1] .

With this in mind, we can define the subelliptic metric introduced by Nagel-
Stein-Wainger [42]:

Definition 3.1 For any δ > 0, let C(1)
x,y (δ) be the class of absolutely continuous

mappings ϕ : [0, 1] −→ Ω which satisfy

ϕ′ (t) =
∑
|I|≤s

aI (t)
(
X[I]

)
ϕ(t)

a.e.

with aI : [0, 1]→ R measurable functions,

|aI (t)| ≤ δ|I|,
ϕ (0) = x, ϕ (1) = y.

Then define

d1 (x, y) = inf
{
δ > 0 : ∃ϕ ∈ C(1)

x,y (δ) with ϕ (0) = x, ϕ (1) = y
}
.

Differently from the control distance d introduced in §3.1.1, the finiteness of
d1 (x, y) for every couple of x, y ∈ Ω (Ω open connected subset of Rn) is now
obvious. Also d1 is a distance.
The idea behind the above definition is the following: to reach a point y

starting from x we can follow any curve we want, but we move faster if we choose
to follow integral lines of the basic vector fields X1, ..., Xq (“the highways”) and
we move slower and slower as we follow integral lines of commutators of the
Xi’s of higher and higher step (“minor roads”). The distance d1 measures the
total time we spend to reach y from x. By comparison, the control distance
d is defined using only “the highways”to connect points, and in that case the
connectivity property is not obvious. One of the deep results proved by Nagel-
Stein-Weinger in [42] is that:

Theorem 3.2 The distances d and d1 are locally equivalent:

d1 (x, y) ≤ d (x, y) ≤ cd1 (x, y)

locally.
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Inequality d1 (x, y) ≤ d (x, y) is trivial, because any Cx,y (δ) ⊂ C
(1)
x,y (δ).

Inequality d (x, y) ≤ cd1 (x, y) in particular implies the finiteness of d (x, y)
(since d1 (x, y) is obviously finite), that is the connectivity theorem. In some
sense, this equivalence can be seen as a quantitative version of the connectivity
theorem.
In particular, in order to estimate the volume of the metric balls Bd (x, r) we

can equivalently estimate the volumes of the balls Bd1 (x, r), which turns out to
be easier.
In order to study the volume of metric balls and other metric properties, it

is useful to exploit suitable coordinate systems.
First, let us recall that the exponential of a vector field is defined, as usual,

as follows: we say that
exp (X) (x0) = f (1)

where f (t) is the solution to the Cauchy problem{
f ′ (t) = Xf(t)

f (0) = x0

Now, let
{(
X[I]

)
x0

}
I∈B

be a basis of Rn obtained choosing, at the point x0,

suitable commutators of the Xi’s. Let us consider the map

{uI}I∈B 7→ x = exp

(∑
I∈B

uIX[I]

)
(x0) (3.3)

defined from a neighborhood of the origin in the Rn space of the variables
{uI}I∈B to a neighborhood U (x0).

The jacobian of this map at u = 0 equals the matrix
{(
X[I]

)
x0

}
I∈B

, which

is nonsingular since the vectors
(
X[I]

)
x0
are a basis of Rn; hence this map is a

local diffeomorphism, which represents a neighborhood of x0 by means of the
canonical coordinates {uI}I∈B. This coordinate system depends on the choice
B of the basis. Note that, by definition of the distance d1,

|uI | ≤ δ|I| ∀I ∈ B =⇒ x ∈ Bd1 (x0, δ) .

Hence, to study d1-metric balls, an interesting object is the δ-box{
u ∈ Rn : |uI | ≤ δ|I| ∀I ∈ B

}
(which also depends on our choice of B). Now, under the exponential mapping
(3.3) the volume of the image of this box should be comparable to

δ|B|
∣∣∣∣det

{(
X[I]

)
x0

}
I∈B

∣∣∣∣ (3.4)

having set
|B| =

∑
I∈B
|I| .
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This suggests that, in order to find a sharp estimate of the volume of metric
balls Bd1 (x0, δ), one has to choose the set B of generators that maximizes the
quantity (3.4). Note that this choice depends both on the center and on the
radius of the ball, which makes very delicate the analysis carried out by Nagel-
Stein-Wainger. Their result is the following:

Theorem 3.3 (Volume of metric balls) For any Ω′ b Ω there exist con-
stants C1, C2, r0 such that for any x ∈ Ω′ and δ ≤ r0 one has

0 < C1 ≤
|Bd1 (x, δ)|

Λ (x, δ)
≤ C2

where
Λ (x, δ) =

∑
B

∣∣∣det
{(
X[I]

)
x

}
I∈B

∣∣∣ δ|B|
and the sum is taken over all the possible n-tuples B of multiindices I with
|I| ≤ r.

As already remarked, the function |Bd1 (x, δ)| is locally equivalent to |Bd (x, δ)|.
Henceforth we will simply write |B (x, δ)| to denote one of these two functions.

Example 3.4 Let us consider the Grushin vector fields:

X1 = ∂x;X2 = x∂y in R2.

There are just two interesting choices of B:

B1 = ((1) , (2)) (i.e. X1, X2) which gives |B1| = 2 and
∣∣∣det

{(
X[I]

)}
I∈B1

∣∣∣ = |x|

B2 = ((1) , (1, 2)) (i.e. X1 and [X1, X2] ) which gives |B2| = 3 and
∣∣∣det

{(
X[I]

)}
I∈B2

∣∣∣ = 1.

The first choice is possible only at points x 6= 0. Hence, at any point (0, y0) we
will have to choose B2, getting

δ|B2|
∣∣∣∣det

{(
X[I]

)
(0,y0)

}
I∈B2

∣∣∣∣ = δ3

while as soon as we move to (x0, y0) with x0 6= 0, choosing B1 (which has smaller
length than B2) we get

δ|B1|
∣∣∣∣det

{(
X[I]

)
(x0,y0)

}
I∈B1

∣∣∣∣ = δ2 |x0| .

The above theorem states that

C1

(
δ3 + δ2 |x|

)
≤ |B ((x, y) , δ)| ≤ C2

(
δ3 + δ2 |x|

)
with C1, C2 depending on an upper bound on δ and

√
x2 + y2. In particular,

the balls of center (0, y0) have volume comparable to δ3, while the balls of center
(x0, y0) with large x0 and small radius δ have volume comparable to δ2.
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A relevant consequence of the above theorem is the following:

Corollary 3.5 (Local doubling property) For any Ω′ b Ω there exist con-
stants C, r0 such that for any x ∈ Ω′ and δ ≤ r0 one has

|B (x, 2δ)| ≤ C |B (x, δ)| .

Note that, strictly speaking, this does not allow to conclude that (Ω, d, dx)
is a space of homogeneous type in the sense of Coifman-Weiss (see Definition
1.12). Actually, the above doubling condition holds only locally in Ω.

It is worthwhile to note what happens in the particular case of a system of
vector fields which are free up to step s and satisfy Hörmander’s condition at
step s in Ω. In this case, if B is a choice of generators such that

det
{(
X[I]

)
x

}
I∈B 6= 0 (3.5)

at some point x ∈ Ω, then this will be true at every point of Ω. Moreover, for a

fixed Ω′ b Ω the function
∣∣∣det

{(
X[I]

)
x

}
I∈B

∣∣∣ will have positive lower and upper
bounds, hence the function Λ (x, δ) will be equivalent to cδQ for some Q which
is the smallest value of |B| such that (3.5) holds. Therefore:

Corollary 3.6 (Volume of metric balls for free vector fields) If the Xi’s
are free up to step s and satisfy Hörmander’s condition at step s in Ω then there
exists a positive integer Q and, for any Ω′ b Ω, there exist positive constants
C1, C2, r0 such that for any x ∈ Ω′ and δ ≤ r0 one has

C1δ
Q ≤ |B (x, δ)| ≤ C2δ

Q.

The last part of the paper [42] applies the previous results to the context
studied by Rothschild-Stein in [44]. Let X1, X2, ..., Xq be any system of Hor-
mander’s vector fields in some neighborhood U of x0 ∈ Rn; we can consider the
distance d (x, y) induced in U by the Xi’s; we will call it dX now, to distinguish
from other distances. Let X̃1, X̃2, ..., X̃q be the free lifted vector fields defined
as in [44] in a domain Ũ = U × I ⊂ Rn+m = RN . We can consider the distance
dX̃ defined by the vector fields X̃i in Ũ . Also, we know that in Ũ there is a
quasidistance ρ (ξ, η) = ‖Θη (ξ)‖ naturally attached to the X̃i’s, so two ques-
tions arise: which relation does exist between dX and dX̃ and between ρ and
dX̃? Nagel-Stein-Wainger prove that:

Proposition 3.7 The distance dX̃ and the quasidistance ρ, both defined in sub-
sets of RN , are locally equivalent.

More subtle is the relation between dX̃ and dX , which are defined in subsets
of spaces of different dimensions. First, they prove that

Proposition 3.8 The projection of the metric ball BX̃ ((x, t) , r) on Rn is BX (x, r),
which means that

dX̃ ((x, t) , (y, s)) ≥ dX (x, y) .
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It is not possible, however, to prove a control in the reverse sense, at the
level of distances. For instance, a “reasonable”inequality like

dX̃ ((x, 0) , (y, 0)) ≤ cdX (x, y)

has never been proved. What one can prove is a control (in both senses) at the
level of volumes. This is a deep result, relying on the previous analysis of the
structure of metric balls, and reads as follows:

Theorem 3.9 (Volumes of lifted and unlifted balls) There exists c1 > 0
such that for any r > 0 small enough and any (x, t) ∈ RN , y ∈ Rn (in the small
neighborhoods under consideration),∣∣BX̃ ((x, t) , r)

∣∣ ≥ c1 |BX (x, r)|
∣∣{s ∈ Rm : (y, s) ∈ BX̃ ((x, t) , r)

}∣∣ .
Conversely, there exists δ ∈ (0, 1) and c2 > 0 such that, for any r, (x, t) as
above and y ∈ BX (x, δr) ,∣∣BX̃ ((x, t) , r)

∣∣ ≤ c2 |BX (x, r)|
∣∣{s ∈ Rm : (y, s) ∈ BX̃ ((x, t) , r)

}∣∣ .
In the above statements, the symbol |·| stands for the full dimensional Lebesgue
measure in any of the three spaces RN ,Rn,Rm.

The geometric meaning of the theorem is that the volume of the lifted ball
BX̃ is equivalent to the volume of a “cylinder” having the ball BX as basis
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and the set
{
s ∈ Rm : (y, s) ∈ BX̃

}
as “height”. However, this equivalence of

volumes is not the consequence of a simple set inclusion, but more the substitute
of such lacking inclusion.
The above theorem is a powerful tool, which helps in deriving estimates in

the original space starting from analogous estimates in the lifted space, where
they are more easily established.

The final result proved by Nagel-Stein-Wainger is a direct application of
Theorem 3.9. Assume we have a kernel k (ξ, η) in the lifted space, satisfying the
local bound

k ((x, t) , (y, s)) ≤ c
dX̃ ((x, t) , (y, s))

a∣∣BX̃ ((x, t) , dX̃ ((x, t) , (y, s))
)∣∣

and let us define the “restricted kernel”, obtained from the previous one satu-
rating by integration the lifted variables:

Rk (x, y) =

∫
Rm

k ((x, 0) , (y, s))φ (s) ds

for a suitable cuoff function φ. Then it is not diffi cult to prove, using Theorem
3.9 and the doubling condition, that

Rk (x, y) ≤ c dX (x, y)
a∣∣BX̃ (x, dX (x, y))

∣∣ .
Also, if ∣∣∣X̃i1X̃i2 ...X̃ihk ((x, t) , (y, s))

∣∣∣ ≤ c dX̃ ((x, t) , (y, s))
a−h∣∣BX̃ ((x, t) , dX̃ ((x, t) , (y, s))

)∣∣
then

|Xi1Xi2 ...XihRk (x, y)| ≤ c dX (x, y)
a−h∣∣BX̃ (x, dX (x, y))

∣∣ .
The previous general fact applies in particular to the parametrix built in [44]
for the lifted operator, satisfying

Γ (Θ ((x, t) , (y, s))) ≤ c

ρ ((x, t) , (y, s))
Q−2

= c
dX̃ ((x, t) , (y, s))

2∣∣BX̃ ((x, t) , dX̃ ((x, t) , (y, s))
)∣∣ .

Then the function

γ (x, y) =

∫
Rm

Γ (Θ ((x, 0) , (y, s)))φ (s) ds

satisfies a bound

γ (x, y) ≤ c dX (x, y)
2∣∣BX̃ (x, dX (x, y))

∣∣ ,
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and similar bounds hold for the derivatives:

|Xi1Xi2 ...Xihγ (x, y)| ≤ c dX (x, y)
2−h∣∣BX̃ (x, dX (x, y))

∣∣
near the pole. This is what the Authors actually prove. What they claim is that
these bounds apply, near the pole, to the fundamental solution of the original
Hörmander operator

∑
X2
i . This statement is a bit unsatisfactory, in my opin-

ion. Actually, in [42] it is implicitly understood that we can apply this procedure
to a fundamental solution for the lifted operator, obtaining a fundamental so-
lution γ for the original operator. However, in [44] no fundamental solution is
exhibited for the lifted operator, but only the parametrix Γ (Θ ((x, t) , (y, s))),
which satisfies a simple bound by the homogeneity of Γ. Saturating this para-
metrix should produce a parametrix for the original Hörmander operator, and
only with a hard work one could produce, starting with this, an effective funda-
mental solution. If, instead, one starts with an effective fundamental solution
γ of the original Hörmander operator, whose existence is assured by some ab-
stract argument, then one should prove that this γ behaves near the pole like
the kernel that we get by saturation.
Apart from the above minor criticism, the idea of exploiting Thm 3.9 to

derive bounds on some kernel obtained by saturating the lifted variables of
another kernel defined in a higher dimensional space, is deep, and has been
fruitfully used also by other authors. We will give some account about this in
§§3.2.3-3.2.4.
Let us mention that, independently and almost simultaneously to [42], Sanchez-

Calle published the paper [45], 1984, with the same final goal (local estimates on
the fundamental solution) and also containing theorem 3.9, which is proved by
a completely different method, relying on previous results by Fefferman-Phong.
Sanchez-Calle’s paper does not contain the general study of the volume of metric
balls performed by Nagel-Stein-Weinger. On the other hand, differently from
the paper by Nagel-Stein-Weinger, it contains a construction of the fundamental
solution which is then shown to satisfy suitable bounds.
Let us also mention the paper by Fefferman, Sánchez-Calle, 1986 [26], which

contains a far-reaching extension of the aforementioned upper bounds on fun-
damental solutions, for general subelliptic operators with nonnegative charac-
teristic form (not necessarily written as sum of squares of vector fields).

3.1.3 Jerison’s Poincaré inequality for Hörmander’s vector fields

A second important application of the lifting theorem is contained in the famous
paper by Jerison [35], 1986, where the following Poincaré’s inequality for Hör-
mander’s vector fields is proved: if X1, ..., Xq is a system of Hörmander’s vector
fields in a domain Ω, and B (x, r) denote the balls with respect to the control
distance induced by the vector fields, then there exist constant C, r0 such that
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for every x ∈ Ω and r < r0 such that B (x, 2r) ⊂ Ω we have

min
a∈R

∫
B(x,r)

|f (y)− a|2 dy ≤ Cr2

∫
B(x,r)

q∑
i=1

|Xif (y)|2 dy

for every f ∈ C∞
(
B (x, r)

)
. This result relies both on Rothschild-Stein’s lift-

ing and approximation theorem, and on Nagel-Stein-Weinger results (in par-
ticular, Thm 3.9). Moreover, in order to describe precisely the dependence of
the constants C, r0, Jerison scrutinizes the proofs of these two results, to state
quantitative versions of them.
Let us give some ideas of the strategy of Jerison’s proof. First, the Author

establishes Poincaré’s inequality on Carnot groups. This actually is not too
diffi cult. Second, the Author makes the following statement. Assume that we
have proved the desired Poincaré’s inequality under the additional assumption
that the vector fields are free. Then, in particular, this inequality holds for the
lifted vector fields X̃1, X̃2, ..., X̃q, in the sense of Rothschild-Stein, that is

min
a∈R

∫
B̃(ξ,r)

|f (η)− a|2 dη ≤ Cr2

∫
B̃(ξ,r)

q∑
i=1

∣∣∣X̃if (η)
∣∣∣2 dη,

with the obvious meaning of symbols. Applying this inequality to any smooth
function f (y, s) which actually does not depend on s we find

min
a∈R

∫
B̃(ξ,r)

|f (y)− a|2 dyds ≤ Cr2

∫
B̃(ξ,r)

q∑
i=1

|Xif (y)|2 dyds

which, thanks to Theorem 3.9, easily gives

min
a∈R

∫
B(x,r)

|f (y)− a|2 dy ≤ Cr2

∫
B(x,r)

q∑
i=1

|Xif (y)|2 dy.

So, thanks to Nagel-Stein-Weinger’s result, the proof is reduced to showing that
Poincaré’s inequality holds for free Hörmander’s vector fields, already knowing
that it holds on Carnot groups. This can be done applying Rothschild-Stein’s
lifting and approximation result, but not easily. Actually, by a clever application
of these techniques Jerison manages to prove the following “main Lemma”:

min
a∈R

∫
B̃(ξ,r/c)

|f (η)− a|2 dη ≤ Cr2

(∫
B̃(ξ,cr)

q∑
i=1

∣∣∣X̃if (η)
∣∣∣2 dη +

∫
B̃(ξ,r)

|f (η)|2 dη
)
,

for some constant c > 1. In other words, what one gets is a relation similar
to Poincaré’s inequality, but with an “error term”

∫
B̃(ξ,r)

|f (η)|2 dη apparently
bigger than the left-hand side. The redeeming feature of this inequality, however,
is the (possibly small) r2 which multiplies this error term. Thanks to a convering
theorem of Whitney type, then, the error term is eventually adsorbed and the
desired result is proved.
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3.2 More recent variations on the theme and applications
of the lifting theorem (2000s-today)

Here we briefly discuss some more recent extensions or further applications of
the lifting theorem, together with some background and motivation.

3.2.1 A weighted version of the lifting theorem

In 1999 Christ-Nagel-Stein-Wainger in [24, § 22] proved a more general version of
the lifting theorem, because they also consider “weighted”vector fields. Assume
that X1, ..., Xq is a system of vector fields in an open set Ω ⊆ Rn, and each
Xi has an assigned “weight” expressed by an integer pi ≥ 1. We say that a
commutator [Xi, Xj ] has weight pi + pj , and so on. Assume that X1, ..., Xq

satisfy Hörmander’s condition at weighted step s, that is the commutators of
weighted length ≤ s are enough to span Rn at every point of Ω. Then there
exists an integer N = n+m and lifted vector fields X̃1, ..., X̃q,

X̃i = Xi +

m∑
j=1

bij (x, t1, ..., tj−1) ∂tj

(x ∈ Ω) which are free up to weighted step s and still statisfy Hörmander’s
condition at weighted step s. The Authors also prove an approximation result.
This more general theorem in particular covers the case of a Hörmander operator
with drift,

q∑
i=1

X2
i +X0

where X1, ..., X1 have weight 1 while X0 has weight 2. (This case is not explicitly
carried out in Rothschild-Stein’s paper, although it is required by their theory:
this is one of the details left to the reader in [42]). In [24, § 22] this lifting
theorem is one of the tools used to prove the Lp boundedness of singular Radon
transforms and their maximal analogues. These operators are kinds of singular
integral operators, which however involve integration over a k-dimensional sub-
manifold of Rn, varying from point to point, with k < n. So, this more general
lifting result is proved for a specific reason, not just for the seak of generality.
We will not get into more details about this.

3.2.2 Another version of the lifting theorem for groups

In 2005 Bonfiglioli-Uguzzoni in [9] proved the following lifting theorem for
Carnot groups. Let X1, ..., Xq be the generators of a Carnot group G in Rn,
which is not free. (The Heisenberg groups Hn for n ≥ 2 are an example of
non-free Carnot groups). Then there exists a higher dimensional free Carnot
group G′ in RN for some N > n such that the generators X̃1, ..., X̃q of G′ are a
lifting of X1, ..., Xq. Like for Folland’s 1977 result in [27], here vector fields are
lifted directly to the generators of a Carnot group, without the necessity of a
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remainder. Hence, this result is not covered by the original one by Rothschild-
Stein. Differently from Folland, here the lifted vector fields are free, and the
starting vector fields are already left invariant. So, this result and Folland’s one
are not comparable. Let us explain the Authors’motivation for this result.
In the series of papers [6], 2002, [7], 2004, [10], 2007, by Bonfiglioli-Lanconelli-

Uguzzoni, the Authors have deeply investigated the family of operators

H =

q∑
i,j=1

aij (x, t)XiXj − ∂t (3.6)

where X1, ..., Xq are the generators of a Carnot group on Rn, the matrix {aij}
is uniformly positive on a domain, and the coeffi cients aij are Hölder continu-
ous. The aim is to build a fundamental solution (heat kernel) of this variable
coeffi cient operators, and prove that it satisfies sharp Gaussian bounds. This
construction is performed in [7] and, exploiting this heat kernel, in [10] a scale-
invariant Harnack inequality is proved. The heat kernel for H is built by the
parametrix method, starting with the heat kernel of a corresponding constant
coeffi cient operator

HA =

q∑
i,j=1

aijXiXj − ∂t. (3.7)

In turn, to make this construction possible, it is necessary to prove that the
heat kernel of the constant coeffi cient operator HA satisfies uniform Gaussian
estimates, as the constant matrix A = {aij} ranges in the class Aν of matrices
satisfying

ν |ξ|2 ≤
q∑

i,j=1

aijξiξj ≤ ν−1 |ξ|2

for some ν ∈ (0, 1), every ξ ∈ Rq. This is performed in [6]. It is also necessary
to show that the heat kernel depends Hölder-continuously on the matrix aij .
Proving this poses a subtle problem, which the Authors overcome in [6], also
exploiting the results in [8], 2004, as follows. The Authors construct a Lie-group
diffeomorphism which transforms the heat operator

h =

q∑
i=1

X2
i − ∂t

into the operator HA in (3.7). The heat kernel ΓA of HA can be expressed by
means of this diffeomorphism and the matrix A in terms of the (fixed) heat
kernel γ of h. This explicit relation allows to prove the desired continuous
dependence of ΓA on A. But the construction of this diffeomorphism requires
the extra assumption that the Carnot group be free. If the Carnot group is
not free, the Authors apply the lifting theorem in [9] to make the construction
possible. The general case is then reduced to the free one.
We end this survey of this line of research pointing out that all the re-

sults about the fundamental solution and Harnack inequality for operators H
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as in (3.6) have been extended to the case of general Hörmander’s vector fields
(without any underlying group structure) by Bramanti-Brandolini-Lanconelli-
Uguzzoni in [16], 2010.

3.2.3 Nonsmooth Hörmander’s vector fields

In 2010 Bramanti-Brandolini-Pedroni in [18] extended the lifting and approxi-
mation theorem to the case of nonsmooth Hörmander vector fields. This result
has its context within a recent new theory which is worthwhile to be briefly
explained here. If

Xi =

n∑
i,j=1

bij (x) ∂xj

(for i = 1, 2, ..., q) is a system of vector fields defined in a domain Ω ⊆ Rn, in
order to compute their commutators up to some length r it is enough that the
coeffi cients bij be (r − 1)-times continuously differentiable. So it is meaningful
to consider a set of vector fields with coeffi cients Cs−1 (Ω) for some positive
integer s, satisfying Hormander’s condition at step s in Ω. We will say that
this is a system of nonsmooth (actually, Cs−1) Hörmander vector fields. This
is the setting considered in the papers by Bramanti-Brandolini-Pedroni [18],
2010, [19], 2013, and in the paper [17], by Bramanti-Brandolini-Manfredini-
Pedroni, 2017. Actually, to obtain some of the results, this minimal regularity
assumption (Cs−1) has to be reinforced to Cs−1,α for some α ∈ (0, 1) or to
Cs−1,1 (depending on the result).
In [19] a Poincaré’s inequality is proved for a system of Cs−1,1 vector fields

(satisfying Hörmander’s condition at step s), thus extending Jerison’s result in
[35] to the nonsmooth context. (Let us note that a similar result has been ob-
tained, independently and with a different technique, by Morbidelli-Montanari
in [40]). Like in Jerison’s paper, the result is first established for free (but, in
this case, nonsmooth) vector fields, then projected on the space of the origi-
nal variables, thanks to a suitable nonsmooth version of Nagel-Stein-Weinger’s
theorem 3.9, about the comparison of volumes of lifted and unlifted balls. The
required lifting theorem is the one established in [18], under the mere Cs−1

assumption, and is an adaptation to the nonsmooth case of the proof of the
(smooth) lifting theorem given by Hörmander-Melin in [34]. Poincaré’s inequal-
ity for nonsmooth free vector fields is obtained with a strategy which is different
from the one used by Jerison, and instead exploits the techniques contained in
the paper by Lanconelli-Morbidelli [39], 2000.
Let us spend a few words also about the approximation theorem which is

combined with the nonsmooth lifting theorem in [18]. If one tried to apply
the same technique used by Rothschild-Stein directly to the nonsmooth lifted
vector fields, the resulting map Θη (ξ) which plays the role of local coordinates
in which X̃i is approximated by the left invariant homogeneous Yi would possess
a poor regularity, and would not serve the scope. This forces us to use a two-
step approximation procedure. Assume the vector fields Xi have regularity
Cs−1,α for some α ∈ (0, 1). Their lifted vector fields X̃i will have the same
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regularity. Now, at a fixed point ξ, take the Taylor expansion of order (s− 1)

of the coeffi cients of Xi, and consider the smooth vector fields S
ξ
i having as

coeffi cients these Taylor polynomials. One can prove that the smooth vector
fields Sξ1 , ..., S

ξ
q are still free and satisfy Hörmander’s condition at step s. By

Rotschild-Stein’s approximation theorem, they are locally well approximated by
the generators Y1, ..., Yq of a Carnot group in the lifted space. Now the X̃i are

locally approximated by the Sξi which in turn are locally approximated by the
Yi. The map Θη (ξ) which connects X̃i with Yi now has asymmetric properties
with respect to the variables ξ, η: for η fixed, it is a smooth diffeomorphism in
ξ; but it depends on η only in Cα-way.
Besides its role in the proof of Poincaré’s inequality for nonsmooth vector

fields, carried out in [19], this nonsmooth lifting and approximation machinery
has been exploited in [17], in a way that is similar to how Nagel-Stein-Weinger
have employed it in [42]. In [17] the Authors studied the nonsmooth Hörmander
operator

L =

q∑
i=1

X2
i +X0.

For expositive reasons here we restrict ourselves to the special case

L =

q∑
i=1

X2
i .

Again, it is assumed that for some integer s ≥ 2 and some α ∈ (0, 1], the
vector fields Xi have Cs−1,α (Ω) coeffi cients and satisfy in Ω ⊆ Rn Hörmander’s
condition at step s. By the nonsmooth lifting and approximation result, we
can build a sublaplacian

∑q
i=1 Y

2
i on a Carnot group in the space RN = Rn+m

of lifted variables, which by Folland’s results possesses a global homogeneous
fundamental solution Γ. Let Θη (ξ) be the nonsmooth version of Rothschild-
Stein map, as built in [18], and let us define the following kernel, by saturation
of the lifted variables:

P (x, y) =

∫
Rm

(∫
Rm

Γ
(
Θ(y,k) (x, h)

)
φ (h) dh

)
φ (k) dk,

where φ is a suitable cutoff function. Here

ξ = (x, h) , η = (y, k) ∈ RN = Rn+m.

This P (x, y) is smooth in x and only Hölder continuous in y. It turns out that
P is a parametrix for L and, starting with P , the classical Levi’s parametrix
method allows to build a local fundamental solution γ for L, with γ and its
first order derivatives (with respect to x) satisfying natural growth estimates.
Requiring one more degree of regularity in the coeffi cients ofXi, that is Cs,α (Ω),
one can prove that γ also has second order derivatives XiXjγ satisfying natural
growth estimates, and a local solvability result for L is proved. This paper is
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the first one where general nonsmooth Hörmander operators are studied, and
is a good example of pushing forward the techniques of Rothschild-Stein and
Nagel-Stein-Weinger.

3.2.4 Homogeneous Hörmander operators

In 2017 Biagi-Bonfiglioli, in [1], considered the class of sum of squares of Hör-
mander’s vector fields X1, ..., Xp which are defined on the whole Rn and are
homogeneous with respect to some family {δλ}λ>0 of dilations (but not nec-
essarily left invariant with respect to a group of translations). The simplest
example of this kind is the Grushin operator

L = ∂2
xx + x2∂2

yy

in R2. Other examples are the following:

L Rn δλ q
(∂x1)

2 + (xk1 ∂x2)
2 2 (λx1, λ

k+1x2) k + 2

(∂x1)
2 + (x1∂x2 + x2∂x3 + . . .+ xn−1∂xn)

2
n (λx1, λ

2x2, · · · , λnxn) n(n+1)
2

(∂x1)
2 +

(
x1 ∂x2 + x2

1 ∂x3
)2

3 (λx1, λ
2x2, λ

3x3) 6

By Folland’s lifting theorem in [28], suitably adapted by the Authors, the
operator L can be lifted to the sublaplacian L̃ of a higher dimensional Carnot
group G, which possesses a global, left invariant, homogeneous fundamental
solution ΓG (x, k; y, h) = ΓG

(
(x, k)

−1 ∗ (y, h)
)
(here x, y ∈ Rn, (x, k) , (y, h) ∈

G, k, h ∈ Rm are the variables which are added in the lifting procedure). Then
the Authors prove that the function

Γ (x, y) =

∫
Rm

ΓG

(
(x, 0)

−1 ◦ (y, h)
)
dh

is a well defined, global fundamental solution for the original operator L, enjoy-
ing several interesting properties: it is smooth out of the diagonal, symmetric
in x, y, strictly positive, locally integrable on Rn × Rn; it vanishes when x or y
go to infinity; it is jointly homogeneous of degree 2− q < 0, i.e.

Γ (δλ (x) , δλ (y)) = λ2−qΓ (x, y)

for every λ > 0, x 6= y, where q is the homogeous dimension of Rn, that is

q =

n∑
i=1

σi with δλ (x) = (λσ1x1, ..., λ
σnxn) .

This paper represents a very interesting application of Folland’s version of the
lifting theorem, proved 40 years before. This result has been extended by the
same Authors to homogeneous heat-type operators

p∑
i=1

X2
i − ∂t
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in [2]. Note that, in absence of a group structure, very few global results are
known for Hörmander operators, so these works represent a promising line of
research.
Starting with this integral representation of a global fundamental solution

for L, it is possible, in turn, to apply Nagel-Stein-Weinger technique (which in
this situation can be easily extended to a global result) and derive global natural
growth estimates for Γ. This has been done by Biagi-Bonfiglioli-Bramanti in [3],
getting the following global bounds:

|Z1...ZrΓ (x, y)| ≤ C d (x, y)
2−r

|BX (x, d (x, y))|
where Z1, ..., Zr stand for any r derivatives among X1, ..., Xq, with respect to x
or y. Also, if n > 2

C1
d (x, y)

2

|BX (x, d (x, y))| ≤ Γ (x, y) ≤ C2
d (x, y)

2

|BX (x, d (x, y))|
(when n = 2 the result assumes a more involved form, due to the possibility
of logarithmic growth). These results are an interesting example of application
of the combination of techniques dating to Rothschild-Stein and Nagel-Stein-
Weinger. In the reacher context of homogeneous operators, however, the results
are definetely more quantitative than the oroginal ones: here the fundamental
solution Γ is a uniquely defined kernel, the constants depend on a few known
parameters, the estimates hold globally in Rn.

Analogously, Biagi-Bramanti in [4], derive from the integral representation
of the heat kernel of a homogeneous operator

∑q
i=1X

2
i − ∂t, natural global

Gaussian estimates.

4 Sketch of the proof of the lifting and approx-
imation theorem

In this last section we will sketch the ideas of the proof of the lifting theorem
following the approach followed by Hörmander-Melin [34], 1978; a detailed ex-
position of the arguments of [34] has been presented in the paper [18], where
this approach is adapted to the context of nonsmooth Hörmander vector fields,
and will appear in [13].
Once again, here we restrict ourselves to the case of generators of weight one

(no drift term). We start recalling once more some notation which has been
already used.
Let X1, ..., Xq be a system of real smooth vector fields, defined in a domain

Ω ⊆ Rn. For any multiindex

I = (i1, i2, ..., ik)

we define the weight (or length) of I as |I| = k. For I = (i1, i2, ..., ik) we set:

XI = Xi1Xi2 ...Xik
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and
X[I] =

[
Xi1 ,

[
Xi2 , ...

[
Xik−1 , Xik

]
...
]]
.

If I = (i1) , then
X[I] = Xi1 = XI .

As usual, we will write
X[I]f

to denote the differential operator X[I] acting on a function f , and(
X[I]

)
x

to denote the vector field X[I] evaluated at the point x.

4.1 Lifting

We are now going to define the concept of free system of vector fields. Actually,
this notion has been already introduced in §2.2; the definition that we will give
in this section is formulated in a more technical way, which actually turns out
to be more useful in the proofs. It can be proved that the two definitions are
equivalent.
Let us start with the following remark. Any vector field X[I] with |I| ≤ s

can be rewritten explicitly as a linear combination of operators of the kind XJ

for |J | = |I|:
X[I] =

∑
J

AIJXJ

where [AIJ ]|I|,|J|≤s is a matrix of universal constants, built exploiting only those
relations between X[I] and XJ which hold automatically, as a consequence of
the definition of X[I], regardless of the specific properties of the vector fields
X1, ..., Xq. In particular, we see that

AIJ = 0 if |J | 6= |I| (4.1)

and
AIJ = δIJ if |J | = |I| = 1.

Example 4.1 For the system {X1, X2} and s = 2 we have 6 possible multi-
indices:

1, 2, (1, 1) (1, 2) , (2, 1) , (2, 2) .

The only nonzero elements of the matrix {AIJ}|I|,|J|≤2 are:

A1,1 = A2,2 = 1

A(1,2),(1,2) = 1 = A(2,1),(2,1)

A(1,2),(2,1) = −1 = A(2,1),(1,2).

Actually,

X[(1,2)] = [X1, X2] = X1X2 −X2X1 = X(1,2) −X(2,1).
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Note that if {aI}I∈B is any finite set of constants such that∑
I∈B

aIAIJ = 0 ∀J , then
∑
I∈B

aIX[I] ≡ 0 (4.2)

for arbitrary vector fields X1, ..., Xq, since in this case

∑
I∈B

aIX[I] =
∑
I∈B

aI
∑
J

AIJXJ =
∑
J

(∑
I∈B

aIAIJ

)
XJ = 0.

Reversing this property we get an alternative definition of free vector fields:

Definition 4.2 (Free vector fields) For any positive integer σ, we say that
the vector fields X1, ..., Xq are free up to step σ at x, if, for any family of
constants {aI}|I|≤σ,∑

|I|≤σ

aI
(
X[I]

)
x

= 0 =⇒
∑
|I|≤σ

aIAIJ = 0 ∀J.

This definition is consistent with the one previously given.

Example 4.3 (a) In R3,

X1 = ∂x1 + 2x2∂x3

X2 = ∂x2 − 2x1∂x3

are free up to step 2 at 0 (Actually, they are free at any point, but for simplicity
we check this fact at the origin). Namely, if

0 = a1 (X1)0 + a2 (X2)0 + a12 ([X1, X2])0 = a1∂x1 + a2∂x2 + a12∂x3

then a1 = a2 = a12 = 0.
(b) Instead, in R5,

X1 = ∂x1 + 2x2∂x5

X2 = ∂x2 − 2x1∂x5

X3 = ∂x3 + 2x4∂x5

X4 = ∂x4 − 2x3∂x5

are not free up to step 2 at 0. Namely,

[X1, X2]− [X3, X4] = 0,

which should imply
A(1,2),J −A(3,4),J = 0 ∀J,

while for J = (1, 2) we have

A(1,2),(1,2) −A(3,4),(1,2) = 1− 0 = 1.
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(c) In R3,

X1 = x3∂x1 + 2x2∂x3

X2 = ∂x2 − 2x1∂x3

are free up to step 2 at (0, 0, 1), for in this case the situation is like in example
(a), but they are not free up to step 2 at (0, 0, 0), since

(X1)0 = 0 but A11 = 1.

We also note the following basic facts:

Proposition 4.4 If the vector fields X1, ..., Xq are free up to step σ at some
point x0, then there exists a neighborhood U (x0) such that they are free up to
step σ at any point x ∈ U (x0).

Proposition 4.5 Let X1, ..., Xq be vector fields defined in a neighborhood of
x ∈ Rn. If

{(
X[I]

)
x

}
|I|6s span R

n, then

n 6 rank [AIJ ]|I|,|J|6s .

Moreover, the number rank [AIJ ]|I|,|J|6s is, in any case, an absolute constant
only depending on the numbers q, s.

The last assertion holds since the matrix [AIJ ]|I|,|J|6s only exploits those
relations between X[I] and XJ that hold automatically as a consequence of the
definition of X[I], hence it only depends on the step s and the number of vector
fields q.
The next proposition contains a deeper property of free vector fields:

Proposition 4.6 Let X1, ..., X be vector fields defined in a neighborhood of the
origin in Rn that are free up to the step σ at 0. Then for any family of constants
{cI}|I|≤σ ⊂ R there exists a polynomial u in Rn such that XIu(0) = cI when
|I| ≤ σ.

The above proposition is perhaps the most technical point of Hörmander-
Melin’s proof of the lifting theorem. Its proof is delicate, and we will just give
an idea of the problem behind it, later.
The next result, instead, contains the main inductive step towards the proof

of the lifting theorem, and it is worthwhile to present its proof in detail.

Proposition 4.7 Let X1, ..., Xq be free of step σ − 1 but not of step σ at 0.
Then one can find vector fields X̃j in Rn+1 of the form

X̃j = Xj + uj (x)
∂

∂t
(j = 1, ..., q) (4.3)

with uj polynomial such that
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1. the vector fields X̃j remain free up to the step σ − 1;
2. for every s ≥ σ,

dim
〈(
X̃[I]

)
0

〉
|I|≤s

= dim
〈(
X[I]

)
0

〉
|I|≤s + 1

where the symbol 〈Yα〉α∈B denotes the vector space spanned by the vectors {Yα : α ∈ B} .

Before proving the above proposition, let us show how the lifting theorem
easily follows from it.

Theorem 4.8 (Lifting) Let X1, ..., Xq be vector fields defined in a neighbor-
hood of the origin in Rn satisfying Hörmander’s condition of step s at x = 0.
Then there exist an integer m and vector fields X̃k in Rn+m, of the form

X̃k = Xk +

m∑
j=1

ukj (x, t1, t2, ..., tj−1)
∂

∂tj

(k = 1, ..., q) , where the ukj’s are polynomials, such that the X̃k’s are free of

step s and
{(
X̃[I]

)
0

}
|I|≤s

span Rn+m.

This theorem has an obvious reformulation at any point x0 ∈ Rn, with the
lifted vector fields defined in a neighborhood of (x0, 0) ∈ Rn+m. Moreover,
in view of Proposition 4.4, both the conclusions of the theorem (freeness and
Hörmander’s condition at step s for the lifted vector fields) will hold in a suitable
neighborhood of this point.

Proof of the lifting theorem. Let
{(
X[I]

)
0

}
I∈B be a basis of R

n, for some
set B of n multiindices of weight ≤ s. Recall that by Proposition 4.5 we have

n ≤ rank [AIJ ]|I|,|J|≤s ≡ c (s, q) , (4.4)

an absolute constant only depending on s, q.
Now, let σ ≤ s be such that X1, ..., Xq are free of step σ − 1 but not of

step σ, at 0. (If the vector fields Xi were already free of step s, there would be
nothing to prove. We also agree to say that the vector fields Xi are free of step
0 if they are not free of step 1). We can then apply Proposition 4.7 and build
vector fields

X̃j = Xj + uj (x)
∂

∂t
(j = 1, ..., q)

in Rn+1, free of step σ − 1 and such that

dim
〈(
X̃[I]

)
0

〉
|I|≤s

= dim
〈(
X[I]

)
0

〉
|I|≤s + 1 = n+ 1

(because by assumption the
{(
X[I]

)
0

}
|I|≤s span R

n). Hence the
{(
X̃[I]

)
0

}
|I|≤s

still span the whole space Rn+1. Now: either the vector fields
{(
X̃[I]

)
0

}
|I|≤s

49



are free of step s, and we are done, or the assumptions of Proposition 4.7 are
still satisfied, and we can iterate our argument; in this case, by (4.4), condition
n + 1 ≤ c (s, q) must hold. After a suitable finite number m of iterations,
condition n+m ≤ c (s, q) cannot hold anymore, and this means that the vector
fields X̃j must be free of step s. The iterative argument also shows that the
ukj’s are polynomials only depending on the variables x, t1, t2, ..., tj−1.

Proof of Proposition 4.7. Let us show that condition 1 in the above statement
holds for any choice of the functions uj (x) in (4.3). To see this, we first claim
that (4.3) implies

X̃[I] = X[I] + uI (x)
∂

∂t
(4.5)

for any multiindex I and some uI ∈ C∞ (Rn) . Namely, we can proceed by
induction on |I| . For |I| = 1, this is just (4.3); assume (4.5) holds for |I| = j−1.
For |I| = j, let I = (i, J) for some i = 1, ..., q and |J | = j−1. Then, by inductive
assumption,

X̃[I] = X̃[i,J] =
[
X̃i, X̃[J]

]
=

=

[
Xi + ui (x)

∂

∂t
,X[J] + uJ (x)

∂

∂t

]
=

=
[
Xi, X[J]

]
+
(
XiuJ −X[J]ui

) ∂
∂t

=

= X[I] + uI (x)
∂

∂t
.

Next, we show that (4.5) implies that the vector fields X̃i are free of step σ− 1
at 0. If ∑

|I|≤σ−1

aI

(
X̃[I]

)
0

= 0

for suitable constants aI , then by (4.5) we have

0 =
∑
|I|≤σ−1

aI

(
X[I] + uI (x)

∂

∂t

)
0

=

=
∑
|I|≤σ−1

aI
(
X[I]

)
0

+

 ∑
|I|≤σ−1

aIuI (0)

 ∂

∂t
.

Since ∂
∂t is independent from the vectors

(
X[I]

)
0
, this implies that∑

|I|≤σ−1

aIuI (0) = 0

and ∑
|I|≤σ−1

aI
(
X[I]

)
0

= 0.
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But the vector fields Xi are free of step σ − 1 at 0, hence∑
|I|≤σ−1

aIAIJ = 0 for any J with |J | ≤ σ − 1.

Therefore also the vector fields X̃i are free of step σ − 1 at 0.
We now show that it is possible to choose polynomial functions uj in (4.3)

such that condition 2 in the statement of this proposition holds. To show this,
we will prove that there exist polynomials uj and constants {aI}|I|≤σ such that:∑

|I|≤σ

aI
(
X[I]

)
0

= 0 (4.6)

and ∑
|I|≤σ

aI

(
X̃[I]

)
0
6= 0 (4.7)

From (4.6)-(4.7), condition 2 will follow; namely,

0 6=
∑
|I|≤σ

aI

(
X̃[I]

)
0

=
∑
|I|≤σ

aI

((
X[I]

)
0

+ uI (0)
∂

∂t

)
=

∑
|I|≤σ

aIuI (0)

 ∂

∂t
= b

∂

∂t

with b 6= 0, hence
∂

∂t
=
∑
|I|≤σ

aI
b

(
X̃[I]

)
0

and this shows that〈(
X̃[I]

)
0

〉
|I|≤s

=
〈(
X[I]

)
0

〉
|I|≤s ⊕

〈
∂

∂t

〉
,

which implies condition 2.
To prove (4.6)-(4.7), we use our assumption on the vector fields Xi: since

they are not free of step σ, there exist coeffi cients {aI}|I|≤σ such that (4.6) holds
but ∑

|I|≤σ

aIAIJ 6= 0 for some J with |J | ≤ σ. (4.8)

It remains to prove that there exist polynomials uj such that (4.7) holds for
these uj’s and aI’s. To determine these uj’s, let us examine the action of the
vector field ∑

|I|≤σ

aIX̃[I] =
∑
|I|≤σ

aI
∑
|J|≤σ

AIJX̃J

on the function t. For any J with |J | ≤ σ, let us write J = (J ′j) for some
j = 1, ..., q. Then

X̃J t = X̃J′X̃jt = X̃J′

[(
Xj + uj

∂

∂t

)
t

]
= X̃J′uj = XJ′uj
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since uj does not depend on t. We then have:∑
|I|≤σ

aIX̃[I] (t)

 (0) =
∑
|I|≤σ

aI
∑
|J|≤σ

AIJ (XJ′uj) (0) .

where in the inner summation, J = (J ′j), with |J ′| ≤ σ − 1. Since the vector
fields Xi are free of step σ−1 at 0, by Proposition 4.6 for any choice of constants
{cJ′}|J′|≤σ−1 there exists a polynomial u ∈ C∞ (Rn) such that (XJ′u) (0) = cJ′ .

On the other hand, by (4.8), there exists a set of constants {cJ}|J|≤σ such that∑
|I|≤σ

∑
|J|≤σ

aIAIJcJ 6= 0.

Setting cjJ′ = cJ if J = (J ′j) and applying q times Proposition 4.6 to the q sets

of constants
{
cjJ′
}
|J′|≤σ−1

, j = 1, 2, ..., q, we find polynomials u1, ..., uq such

that ∑
|I|≤σ

aIX̃[I] (t)

 (0) =
∑
|I|≤σ

∑
|J|≤σ

aIAIJcJ 6= 0.

Hence (4.7) holds. This completes the proof of the proposition.

Let us now come back to Proposition 4.6. We want to give the reader
an informal idea of the problem involved in its proof, by means of a concrete
example. The vector fields of the Heisenberg group H1 are enough to appreciate
the problem. Let

X1 = ∂x1 + 2x2∂x3

X2 = ∂x2 − 2x1∂x3 .

Then the system we have to solve is:

X1u (0) = c1
X2u (0) = c2
X2

1u (0) = c11

X1X2u (0) = c12

X2X1u (0) = c21

X2
2u (0) = c22

that is



∂x1u (0) = c1
∂x2u (0) = c2
∂2
x1x1u (0) = c11

∂2
x1x2u (0)− 2∂x3u (0) = c12

∂2
x1x2u (0) + 2∂x3u (0) = c21

∂2
x2x2u (0) = c22

(4.9)

Now, a naïf idea to solve this system (or, to better say, to prove in general the
solvability of such a system) could be to decouple the system into subgroups of
equations, looking for a function u of the kind u = u1 +u2 with ui homogeneous
polynomial of degree i (in the usual sense), u1 solving the system of the first
two equations and u2 solving the system of the last four equations. Doing so
we would find (due to the vanishing of ∂x3u2 (0)) the generally incompatible
conditions

∂2
x1x2u2 (0) = c12

∂2
x1x2u2 (0) = c21.
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We can see that the system (4.9) is actually solvable, but in order to solve it
we need to choose properly also the value ∂x3u (0) which is not determined by
the group of the first two equations. A solution u is the polynomial:

u (x1, x2, x3) = c1x1+c2x2+

(
c21 − c12

4

)
x3+

1

2

[
c11x

2
1 + (c12 + c21)x1x2 + c22x

2
2

]
.

The reader can appreciate that a symmetry issue arises here: cartesian mixed
derivative commute while mixed derivatives with respect to the vector fields do
not; this seems to threaten the solvabilty of the system.
A second issue is the following. Trying to prove, in the abstract context,

the solvability of the system, we need to exploit the only assumption we have,
namely the fact that the vector fields are free of step σ. However, this assump-
tion is formulated in terms of the commutators X[I], while the system itself is
written in terms of the differential monomials XI . Hence in order to exploit
our assumption we have to reformulate the problem in a way involving com-
mutators. This will be done seeing both the XI’s and the X[I]’s as particular
polynomials in the vector fields. Actually, the proof of Proposition 4.6 exploits
the language of polynomials in noncommuting variables, and a key step in the
proof will consist in proving the symmetry of a suitable j-linear form. We will
not go into further details.

4.2 Approximation

Here we want to describe the second part of the procedure related to the lifting
theorem, that is the approximation of free vector fields by left invariant vector
fields on a homogeneous group. By the lifting theorem (Theorem 4.8), starting
from any system of vector fields satisfying Hörmander’s condition at step s in
some neighborhood of the origin in Rn we can define new vector fields X̃1, . . . , X̃q

in a neighborhood U of 0 ∈ RN ≡ Rn+m that are free up to step s at any point

of U and such that
{(

X̃[I]

)
ξ

}
|I|≤s

spans RN for any ξ ∈ U . We start with the

following

Remark 4.9 If X̃1, ..., X̃q is a system of vector fields in a bounded domain
U ⊂ RN , free up to the step s and satisfying Hörmander’s condition of step s
in U , then it is possible to choose a set B of N multiindices I with |I| ≤ s, such
that {

X̃[I]

}
I∈B

is a basis of RN at every point ξ ∈ U.

We assume this set B fixed once and for all.
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For any ξ ∈ U, let us introduce in a neighborhood of ξ the set of local
(“canonical”) coordinates

Φξ,B : U (0) ⊂ RN → RN (4.10)

Φξ,B (u) = exp

(∑
I∈B

uIX̃[I]

)(
ξ
)
,

defined for u in a suitable neighborhood U (0) of 0. Note that since card (B) = N
we can represent points of RN as (uI)I∈B.

Recall that
∂Φξ,B
∂uJ

(0) =
d

duJ

(
exp

(
uJX̃[J]

) (
ξ
))
/uJ=0

=
(
X̃[J]

)
ξ
,

hence the Jacobian of the map Φξ,B at u = 0, equals the matrix of the vector

fields
{(

X̃[I]

)
ξ

}
I∈B

and therefore it is nonsingular.

This allows to define canonical coordinates in a suitable neighborhood U
(
ξ
)

of ξ.

Moreover, since the basis
{(

X̃[I]

)
ξ

}
I∈B

depends continuously on the point

ξ, the radius of this neighborhood can be taken uniformly bounded away from
zero for ξ ranging in a compact set.
Henceforth in this section, all the computations will be made with respect

to this system of coordinates defined in a neighborhood of the point ξ (which
has canonical coordinates u = 0).
From now on we will skip the u superscript from X̃u

i , recalling that all our
vector fields will be expressed in canonical coordinates and all functions will be
defined in a neighborhood of the origin.
We start with the following:

Lemma 4.10 In the canonical coordinates we have∑
I∈B

uI∂uI =
∑
I∈B

uIX̃[I]. (4.11)

Since the above relation will play an essential role in the following, we present
its easy proof.

Proof. We start by noting that, if Y =
∑
I∈B yI (u) ∂

∂uI
and Z =

∑
I∈B zI (u) ∂

∂uI
are two vector fields such that

Z (uJ) = Y (uJ) for any J ∈ B,

(that is, the vector fields act at the same way on the functions u 7→ uJ) then
yI (u) = zI (u) for any I ∈ B, hence Y = Z. Therefore, it will be enough to
show that (∑

I∈B
uIX̃[I]

)
(uJ) =

(∑
I∈B

uI
∂

∂uI

)
(uJ)
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that is (∑
I∈B

uIX̃[I]

)
(uJ) = uJ .

Now, for any vector field Y,

Y f (ξ) =
d

dt

(
f
(
exp (tY )

(
ξ
)))

/t=t0
where ξ = exp (t0Y )

(
ξ
)
.

Hence, if Y =
∑
I∈B uIX̃[I], then(∑

I∈B
uIX̃[I]

)
(uJ) =

d

dt

(
uJ

(
exp

(
t
∑
I∈B

uIX̃[I]

)(
ξ
)))

/t=t0

just by definition of the coordinates uI

=
d

dt
(tuJ)/t=t0 = uJ .

Definition 4.11 (Weights) 2We assign the weight |I| to the coordinate uI and
the weight − |I| to ∂uI . In the following we will say that a C∞ function f has
weight > σ if the Taylor expansion of f at the origin does not include terms of
the kind auI1uI2 · · ·uIk with a 6= 0 and |I1|+ |I2|+ . . .+ |Ik| < σ. A vector field
Y =

∑
I∈B fI∂uI has weight > σ if fI has weight > σ + |I| for every I ∈ B.

Note that the weight of a smooth function is always ≥ 0, while the weight
of a vector field is ≥ −s, since |I| ≤ s for every I ∈ B.

We want to stress that the definition of weight relies on the canonical coor-
dinates, therefore it depends on the choice of a particular basis B of RN .
The next theorem contains a fundamental piece of information about the

vector fields X̃[I] expressed in canonical coordinates, which parallels the prop-
erties of left invariant homogeneous vector fields on a homogeneous group:

Theorem 4.12 (Weight of a vector field) For every multiindex I, the vec-
tor field X̃[I] has weight > − |I|.

We can now state the approximation theorem for free weighted vector fields:

Theorem 4.13 (Approximation, pointwise version) Let Y1, . . . , Yq be an-
other system of vector fields defined in a neighborhood of the origin using the
canonical coordinates {uI}I∈B induced by X̃[I] and satisfying∑

I∈B
uI∂uI =

∑
I∈B

uIY[I]. (4.12)

2We alert the reader that the above convention about weights of functions and differential
operators is the one made in [34], and is diff erent from that made in [27] and [44]: in the last
two papers, the authors assign positive weight also to derivatives.
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Then
X̃[I] − Y[I] has weight ≥ 1− |I|

for any multiindex I with |I| ≤ s. In particular, for I = (i) we have that

X̃i − Yi has weight ≥ 0 for i = 1, 2, ..., q

The above two theorems are the hard core of the approximation result, and
their proofs are hard computations.

Note that Theorem 4.13 actually contains result which is more general than
the original one by Rothschild-Stein, since it allows to approximate the system
of vector fields X̃i, in a suitable coordinate system, by any other system of vector
fields Yi satisfying (4.12).
Nevertheless, what makes this fact really useful is the possibility of choosing

as approximating vector fields a family of homogeneous left invariant vector
fields on a homogeneous group. This requires an abstract construction.
We have q vector fields X̃1, ..., X̃q, free up to step s and satisfying Hörman-

der’s condition at step s in some domain U of RN where the integer N only
depends on the integers q, s:

N = N (q, s) .

We have the following result:

Theorem 4.14 Let N = N (q, s). There exist in RN a system of smooth vector
fields Y1, ..., Yq and a structure of Carnot group G such that:

(i) the vector fields Y1, ..., Yq are free up to step s in RN and the vectors{(
Y[I]

)
u

}
|I|≤s span R

N at any point u of the space;

(ii) the Y[I]’s are left invariant and homogeneous of degree |I| with respect to
the dilations in G;

(iii) if I ∈ B the vector fields Y[I] at u = 0 coincide with the local basis associ-
ated to the coordinates uI , that is,(

Y[I]

)
0

=
∂

∂uI
;

(iv) the vector field Y[I] satisfy (4.12);

(v) in the group G, the inverse u−1 of an element is just its (Euclidean) op-
posite −u.

Theorem 4.13 can now be applied choosing the left invariant vector fields
Y[I] as the approximating system. The map u = Θ (η, ξ) can now be regarded
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as a diffeomorphism from a neighborhood of η onto a neighborhood of 0 in the
group G. In other words, Θ (η, ξ) is an element of the group G, and one has:

Θ (ξ, η) = −Θ (η, ξ) = Θ (η, ξ)
−1
.

Let us give also an idea of how Theorem 4.14 is proved. As anticipated in
§2.3, this requires an abstract construction.
Let gq be the (abstractly defined) free Lie algebra on q generators. For an

integer s > 1, let hs be the ideal spanned by the commutators of length at least
s+ 1. Then we have:

Proposition 4.15 The quotient gq,s = gq/hs is a finite dimensional stratified
nilpotent Lie algebra of step s. More precisely if we let W1 be the span of the q
generators, and Wl be the span of commutators of length l, then we have

gq,s =

s⊕
k=1

Wk.

Moreover if k + ` 6 s then

[Wk,W`] = Wk+`

while for k + ` > s
[Wk,W`] = 0.

Definition 4.16 The Lie algebra

gq,s = gq/hs

is called the free nilpotent Lie algebra of step s with q generators.

On this Lie algebra we can natural define a family of dilations, as follows.

Definition 4.17 Let a ∈ gq,s and write

a =

s∑
k=1

wk

with wk ∈Wk. For every λ > 0 let us define the dilation operators Dλ

Dλ : gq,s → gq,s

Dλ (a) =

s∑
k=1

λkwk.

Proposition 4.18 The dilations Dλ are automorphisms of the Lie algebra gq,s:
for every a1, a2 ∈ gq,s and c1, c2 ∈ R, we have

Dλ (c1a1 + c2a2) = c1Dλ (a1) + c2Dλ (a2) (4.13)

and
[Dλ (a1) , Dλ (a2)] = Dλ ([a1, a2]) . (4.14)
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In the next step we would like to see gq,s as the Lie algebra of a homoge-
neous Lie group. In order to understand the problem and identify the candidate
algebraic structure of the Lie group we are looking for, let us reverse our rea-
soning for a moment. Assume we do have a homogeneous group G with group
operation �, let g be its Lie algebra and consider the exponential map

Exp : g→ G
Exp : X 7→ Exp (X) = exp (X) (0)

Let X,Y ∈ g. It is easy to prove that

exp (Y ) (x) = x � Exp (Y ) .

Hence for x = Exp (X) = exp (X) (0) we have

exp (Y ) exp (X) (0) = Exp (X) � Exp (Y ) .

Under suitable conditions, by the Baker-Campbell-Hausdorff formula, there ex-
ists one (and only one) vector field S (X,Y ), computable in some way starting
with X,Y , such that

exp (Y ) exp (X) (0) = exp (S (X,Y )) (0) = Exp (S (X,Y )) . (4.15)

Actually, BCH theorem states that:

S (X,Y ) = X + Y +
1

2
[X,Y ]

+
1

12
{[X, [X,Y ]]− [Y, [X,Y ]]}

− 1

48
{[Y, [X, [X,Y ]]] + [X, [Y, [X,Y ]]]}+ ...

≡ X + Y +

+∞∑
k=2

Ck (X,Y )

(but the explicit form of this expression is not important).
If we define

X ◦ Y = S (X,Y ) ,

then it can be proved that this ◦ is a group operation.
Moreover, by (4.15) we have

Exp (X ◦ Y ) = Exp (X) � Exp (Y ) ,

so that the mapping
Exp : (g, ◦)→ (G, �)

becomes a Lie group isomorphism.
We can now come back to our real situation, where (G, �) does not exist yet,

and the identity (4.15) cannot be used. Nevertheless, the group (gq,s, ◦) actually
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exists and by the previous reasoning should be isomorphic to the desired group
(G, �). Hence, the path is now drawn: starting with the group structure (gq,s, ◦)
in RM , we have to check that this is actually a homogeneous group, we have to
construct its Lie algebra and to check that it is isomorphic to gq,s.
So, let us start with the free nilpotent Lie algebra gq,s, which can be identified

with RM . Let

S (u, v) = u+ v +

+∞∑
k=2

Ck (u, v)

be the formal series involved in BCH formula. Recall that Ck is a homogeneous
Lie polynomial of degree k. In our nilpotent Lie algebra, when k > s and
u, v ∈ RM we have Ck (u, v) = 0 so that we can define

u ◦ v = S (u, v) = u+ v +

s∑
k=2

Ck (u, v) .

Remark 4.19 Let S (u, v) = (S1 (u, v) , S2 (u, v) , . . . , SM (u, v)). It is a simple
computation to check that every Si (u, v) is actually a polynomial of degree at
most s in the variables ui, vi.

Proposition 4.20 The binary operation

u ◦ v = S (u, v) = u+ v +

s∑
k=2

Ck (u, v)

and the dilations Dλ induce in RM a structure of homogeneous group G. The
inverse of a element u ∈ G is the opposite −u.
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