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Abstract

For a linear nonvariational operator structured on smooth Hörmander’s

vector fields, with Hölder continuous coefficients, we prove a regularity re-

sult in the scale of C
k,α

X spaces. We deduce an analogous regularity result

for nonvariational degenerate quasilinear equations.

Introduction

LetX1, X2, ..., Xq be a system of smooth Hörmander’s vector fields in a bounded
smooth domain Ω of Rn, with q < n (see §1.1 for precise definitions). Nonvari-
ational operators of the kind

L =

q∑

i,j=1

aij (x)XiXj +

q∑

i=1

bi (x)Xi + c (x) ,

with {aij} real symmetric uniformly positive matrix, have been studied by sev-
eral authors, establishing in particular local a priori estimates on XiXju in
Hölder or Lp spaces, in terms of Lu and u, and assuming the coefficients aij
bounded and, respectively, Hölder continuous or VMO: see [1], [3] for Lp es-
timates and [2], [3], [4] for Schauder estimates. In particular, in [2] evolution
operators of the kind

H = ∂t −

q∑

i,j=1

aij (t, x)XiXj +

q∑

i=1

bi (t, x)Xi + c (t, x)

have been studied, and local a priori Schauder estimates of the following kind
have been proved: if aij , bi, c ∈ Ck,α (U) for some integer k > 0 and some

∗2000 AMS Classification: Primary 35H20. Secondary: 35J62, 35B65, 42B20. Key-words:

Hörmander’s vector fields, quasilinear equations, Ck,α regularity.
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α ∈ (0, 1) , then for every domain U ′ ⋐ U , u ∈ C
k+2,α
loc (U) with Hu ∈ Ck,α (U) ,

‖u‖Ck+2,α(U ′) 6 c
{
‖Hu‖Ck,α(U) + ‖u‖L∞(U)

}
.

Here the Hölder spaces Ck,α are those defined by means of derivatives with
respect to the Xi’s and the distance induced by the vector fields (more precisely,
the parabolic version of these spaces, with the time derivative weighting as a
second order derivative, see §1.1 and §4 for precise definitions).

Note that the previous estimate assumes a priori that u ∈ C
k+2,α
loc (U). A

more subtle problem is that of proving a regularity result of the kind: if u ∈
C2,α (U) solvesHu = f and aij , bi, c, f ∈ Ck,α (U) then actually u ∈ C

k+2,α
loc (U)

(and therefore the above a priori estimate holds). In [2] this regularity result is
actually proved, applying the classical strategy of regularizing the coefficients
and data of the equation, solving the regularized Dirichlet problem and exploit-
ing the a priori estimate to build a sequence of smooth functions converging in
C

k+2,α
loc (U) to the solution of Hu = f . However, using this approach in [2] the

boundedness of the approximating sequence is proved only for k even, hence
the regularity result has been proved so far only for k even. In the present
paper, exploiting the a priori estimates proved in [2], we find a different way
of proving a regularity result which holds for all k (see Theorem 2.1), based
on the Banach-Caccioppoli fixed point theorem. The above result and a stan-
dard bootstrap argument enable us to prove a Schauder regularity result for
quasilinear equations of the kind

Qu ≡

q∑

i,j=1

aij (x, u,Xu)XiXju+ b (x, u,Xu) = 0,

with {aij} uniformly positive, concluding that, in particular, any C2,α (Ω) solu-
tion to Qu = 0 is smooth as soon as aij , b are smooth (see Theorem 3.1). Finally,
in view of the results in [2], both the linear and the quasilinear regularity results
described above can be easily extended to evolution operators ∂t − L, ∂t − Q

(see Theorems 4.1, 4.2). Actually, we have written our proofs in the stationary
case just to simplify notation.

We mention that in the paper [7] this regularity result is also stated, but
the Author makes an extra assumption on the structure of the Xi’s (which does
not cover general Hörmander’s vector fields) and he actually proves only local
a priori estimates, not a regularity result.
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1 Preliminaries and known results

1.1 Hörmander’s vector fields, control distance and Hölder

spaces

Let X1, . . . , Xq be a system of real smooth vector fields,

Xi =

n∑

j=1

bij (x) ∂xj
, i = 1, 2, ..., q

(q < n) defined in some bounded, open and connected subset Ω0 of Rn. For any
multiindex

I = (i1, i2, ..., ik), 1 ≤ ij ≤ q

we set:
X[I] =

[
Xi1 ,

[
Xi2 , . . .

[
Xik−1

, Xik

]
. . .
]]
,

where [X,Y ] = XY − Y X for any couple of vector fields X,Y . We will say
that X[I] is a commutator of length |I| = k. As usual, Xi can be seen either
as a differential operator or as a vector field. We will write Xif to denote the
differential operator Xi acting on a function f , and (Xi)x to denote the vector
field Xi evaluated at the point x ∈ Ω0. We shall say that X1, . . . , Xq satisfy
Hörmander’s condition of step s in Ω0 if these vector fields, together with their
commutators of length ≤ s, span the tangent space at every point x ∈ Ω0.

One can now define the control distance induced by these vector fields, as in
[5]:

Definition 1.1 For any δ > 0, let C (δ) be the class of absolutely continuous
mappings ϕ : [0, 1] → Ω0 which satisfy

ϕ′(t) =

q∑

i=1

λi(t) (Xi)ϕ(t) a.e. t ∈ (0, 1)

with |λj(t)| ≤ δ for j = 1, ..., q. We define

dX(x, y) = inf {δ : ∃ϕ ∈ C (δ) with ϕ (0) = x, ϕ (1) = y} .

Note that the finiteness of dX (x, y) for any two points x, y ∈ Ω0 is not a
trivial fact, but depends on a connectivity result (“Chow’s theorem”); moreover,
it can be proved that dX is a distance. It is also well-known that this distance
is topologically equivalent to the Euclidean one (see [5] for all these facts).

Now, let Ω ⊂ Ω0 be another fixed domain. For any x ∈ Ω, we set

Br (x) = {y ∈ Ω0 : dX (x, y) < r} .

Let us define several types of Hölder spaces that we will need in the following:
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Definition 1.2 For any α ∈ (0, 1) , u : Ω → R, let:

|u|Cα
X
(Ω) = sup

{
|u (x) − u (y)|

dX (x, y)
α : x, y ∈ Ω, x 6= y

}
,

‖u‖Cα
X
(Ω) = |u|Cα(Ω) + ‖u‖L∞(Ω) ,

Cα
X (Ω) =

{
u : Ω → R : ‖u‖Cα(Ω) < ∞

}
.

Also, for any positive integer k, let

C
k,α
X (Ω) =

{
u : Ω → R : ‖u‖Ck,α(Ω) < ∞

}
,

with

‖u‖Ck,α

X
(Ω) =

k∑

l=1

q∑

ji=1

‖Xj1 . . .Xjlu‖Cα(Ω) + ‖u‖Cα(Ω) .

We will set Cα
X,0 (Ω) and C

k,α
X,0 (Ω) for the subspaces of Cα

X (Ω) and C
k,α
X (Ω)

of functions which are compactly supported in Ω, and C
k,α
X,loc (Ω) for the space

of functions belonging to C
k,α
X (Ω′) for every Ω′ ⋐ Ω.

Finally, we will write C
k,α
X,∗ (Ω) to denote the subspace of Ck,α

X (Ω) consisting
of functions u such that both u and all the derivatives Xi1Xi2 ...Xilu (l ≤ k)
vanish on ∂Ω.

Proposition 1.3 The spaces Ck,α
X,∗ (Ω) are complete. Moreover, if u ∈ C

k,α
X,∗ (Br (x0))

and R > r for some BR (x0) ⊂ Ω, then

u (x) =

{
u (x) in Br (x0)
0 in BR (x0) \Br (x0)

belongs to C
k,α
X,0 (BR (x0)) .

Proof. We leave to the reader to check the completeness of these spaces. Let
us prove the second assertion for k = 0, since the same argument applies to the
derivatives. It is enough to check that

|u (x)− u (y)| ≤ cdX (x, y)α for any x ∈ Br (x0) , y ∈ BR (x0) \Br (x0) ,

the other cases being obvious. By definition of dX , for any fixed ε > 0, we can
pick a curve γ : [0, 1] → Ω such that

γ (0) = x, γ (1) = y

γ′ (t) =

q∑

i=1

λi (t) (Xi)γ(t) with |λi (t)| ≤ dX (x, y) + ε.

Since dX (x0, γ (0)) < r and dX (x0, γ (1)) > r, there exists a point z = γ
(
t
)

such that d (x0, z) = r and u (z) = 0. Then

|u (x)− u (y)| = |u (x)| = |u (x) − u (z)|

≤ |u|Cα dX (x, z)α ≤ |u|Cα (dX (x, y) + ε)α .
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Since this is true for every ε > 0, we are done.
The following easy properties of our function spaces will be useful:

Proposition 1.4 (See [2, Proposition 4.2], also [3, Prop.3.27]) Let BR (x) ⊂
Ω, then

(i) For any f ∈ C1
X,0 (BR (x)), one has

|f(x) − f(y)| ≤ dX (x, y)

q∑

i=1

sup
BR(x)

|Xif | (1.1)

for any x, y ∈ BR (x).
(ii) For any couple of functions f, g ∈ Cα

X (BR (x)), one has

|fg|Cα
X
(BR(x)) ≤ |f |Cα

X
(BR(x)) ‖g‖L∞(BR(x)) + |g|Cα

X
(BR(x)) ‖f‖L∞(BR(x))

and
‖fg‖Cα

X
(BR(x)) ≤ 2 ‖f‖Cα

X
(BR(x)) ‖g‖Cα

X
(BR(x)) . (1.2)

1.2 Lifted vector fields and integral operators

Throughout the paper we will make use of some results and techniques originally
introduced by Rothschild-Stein [6] and then adapted to nonvariational operators
in [1], [2], [3]. However, in order to understand the proofs in the present paper,
it is not necessary for the reader to know in detail all the background which is
implicitly involved here. Therefore, to reduce the length of this paper we will
content ourselves of pointing out the facts which will be explicitly used, giving
to the interested reader all the relevant references.

First of all, much of the proof of our main results lives in the space of
“lifted variables”, as in [6]. This basically means what follows. For every point
x ∈ Ω there exists a neighborhood BR (x) ⊂ Ω and, in terms of new variables,
hn+1, . . . , hN , there exist smooth functions λil(x, h) (1 ≤ i ≤ q, n+ 1 ≤ l ≤ N)

defined in a neighborhood Ũ of ξ = (x, 0) ∈ R
N such that the vector fields X̃i

given by

X̃i = Xi +

N∑

l=n+1

λil(x, h)
∂

∂hl
, i = 1, . . . , q

still satisfy Hörmander’s condition of step s in Ũ and possesses further proper-
ties, some of which we are going to recall.

Let us first fix some notation. We will denote by dX̃ the control distance

induced by the vector fields X̃i in Ũ , by B̃R

(
ξ
)
the corresponding balls, and we

will denote by Cα
X̃

(
B̃R

(
ξ
))

, Ck,α

X̃

(
B̃R

(
ξ
))

, Cα
X̃,0

(
B̃R

(
ξ
))

and C
k,α

X̃,0

(
B̃R

(
ξ
))

the function spaces over B̃R

(
ξ
)
defined by the X̃i’s as in §1.1.

The following relation between the spaces Cα
X (BR (x)) and Cα

X̃

(
B̃R

(
ξ
))

is

crucial for us:
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Proposition 1.5 (See [2, Prop. 8.3], [3, Prop. 3.28]) Let B̃r

(
ξ
)
be a lifted

ball, with ξ = (x, 0). If f is a function defined in B2r (x) and f̃ (x, h) = f (x)

is regarded as a function defined on B̃r

(
ξ
)
, then the following inequalities hold

true ∣∣∣f̃
∣∣∣
Cα

X̃
(B̃r(ξ))

6 |f |Cα
X
(Br(x))

6 c
∣∣∣f̃
∣∣∣
Cα

X̃
(B̃2r(ξ))

.

Moreover,

∣∣∣X̃i1X̃i2 ...X̃ik f̃
∣∣∣
Cα

X̃
(B̃r(ξ))

6 |Xi1 ...Xikf |Cα
X
(Br(x))

6 c
∣∣∣X̃i1 ...X̃ik f̃

∣∣∣
Cα

X̃
(B̃2r(ξ))

for ij = 1, 2, ..., q.

The main tool to prove a priori estimates (in [6], [1], [2], [3]) is the combi-
nation of some abstract theory of singular integrals with some representation
formulas for the second order derivatives X̃iX̃ju of any test function by means
of suitable integral operators. The reason why this is performed in the spaces
of lifted variables is that this allows to make use of singular integral operators
with better properties. The key notion here is that of frozen operator of type
zero over a ball B̃R (ξ0), first introduced in [1] adapting the notion of opera-
tor of type zero given in [6]. We will not recall the definition of this concept
(see [2, Definition 6.3]) because it involves several other notions that we will
not use explicitly. It is enough to say that a frozen operator of type zero over
B̃R

(
ξ
)
is an integral operator T (ξ0) (depending on some point ξ0 ∈ B̃R

(
ξ
)
like

a parameter), and that the following two results hold:

Theorem 1.6 (see [2, Thm.6.6], see also [3, Thm.5.1]). There exists CR > 0
depending on R,Ω and the vector fields Xi (but not on ξ0) such that for every

r ≤ R, f ∈ Cα
X,0

(
B̃r

(
ξ
))

,

‖T (ξ0) f‖Cα
X(B̃r(ξ)) ≤ CR ‖f‖Cα

X(B̃r(ξ)) .

Theorem 1.7 For any k = 1, 2, ..., q there exist q + 1 frozen operators of type

zero over B̃R

(
ξ
)
, T k

h (ξ0) for k = 0, 1, 2, ..., q, such that for any f ∈ C1
X

(
B̃r

(
ξ
))

one has:

X̃kT (ξ0) f =

q∑

h=1

T k
h (ξ0) X̃hf + T 0

k (ξ0) f

Proof of Theorem 1.7. In [2, Prop.6.9] an analogous formula is stated for
T (ξ0) , T

k
h (ξ0) frozen operators of type one. Exploiting the fact that any frozen

operator of type zero involved in our argument is actually of the kind X̃iS (ξ0)
with S (ξ0) frozen operator of type one, and viceversa for every frozen operator

of type one S (ξ0) the derivative X̃iS (ξ0) is a frozen operator of type zero, we
can write (denoting frozen operators of type zero or one with the letters T, S,
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respectively):

X̃kT (ξ0) f = X̃kX̃iS (ξ0) f = X̃k

(
q∑

h=1

Si
h (ξ0) X̃hf + S0

k (ξ0) f

)

=

q∑

h=1

T k
h (ξ0) X̃hf + T 0

k (ξ0) f,

which gives the assertion.

2 The linear regularity theory

Let us consider the linear operator

L =

q∑

i,j=1

aij (x)XiXj +

q∑

i=1

bi (x)Xi + c (x)

where:
X1, X2, ..., Xq are a system of Hörmander’s vector fields in a neighborhood

Ω0 of some bounded domain Ω ⊂ R
n, as described at the beginning of § 1.1;

aij , bi, c ∈ Cα
X (Ω) for some α ∈ (0, 1), aij = aji satisfying for some constant

Λ > 0 the condition

Λ|ξ|2 ≤

q∑

i,j=1

aij (x) ξiξj ≤ Λ−1|ξ|2 ∀ξ ∈ R
q, x ∈ Ω. (2.1)

The aim of this section is to prove the following result:

Theorem 2.1 Under the above assumptions, let u ∈ C
2,α
X (Ω) satisfy the equa-

tion
Lu = f in Ω

and assume that for some integer k = 1, 2, 3, ...we have:

aij , bi, c, f,∈ C
k,α
X (Ω) .

Then
u ∈ C

k+2,α
X,loc (Ω) .

In particular, if
aij , bi, c, f,∈ C∞ (Ω)

then
u ∈ C∞ (Ω) .

In virtue of the results in [2], the regularity u ∈ C
k+2,α
X,loc (Ω) also implies the

validity of local a priori estimates

‖u‖Ck+2,α

X
(Ω′) 6 c

{
‖Lu‖Ck,α

X
(Ω) + ‖u‖L∞(Ω)

}

for any Ω′ ⋐ Ω, with constant c independent of u.

7



Remark 2.2 Clearly, it is enough to prove the theorem for bi = c = 0, because
assuming this we can proceed as follows: let u ∈ C

2,α
X (Ω) satisfy the equation

Lu = f in Ω

and assume that
aij , bi, c, f,∈ C

1,α
X (Ω) .

Then

q∑

i,j=1

aij (x)XiXju = f −

q∑

i=1

bi (x)Xiu− c (x) u ≡ f̃ ∈ C
1,α
X (Ω)

and by the result that we suppose already proved for the principal part operator
we conclude u ∈ C

3,α
X,loc (Ω). Iterating this argument gives the general result for

any k. Hence, we need to prove Theorem 2.1 only for bi = c = 0.

Now, fix x0 ∈ Ω and a small ball BR (x0) ⊂ Ω where the lifting procedure is

applicable. Let ξ0 = (x0, 0) , ξ = (x, h), and define, for ξ ∈ B̃R (ξ0) ,

ãij (ξ) = aij (x)

L̃u (ξ) =

q∑

i,j=1

ãij (ξ) X̃iX̃ju (ξ) .

Next, let us freeze the coefficients ãij at ξ0, and let

L̃0u (ξ) =

q∑

i,j=1

ãij (ξ0) X̃iX̃ju (ξ)

For this frozen lifted operator the following representation formula holds
true:

Theorem 2.3 (Representation of X̃mX̃lu by frozen operators) ([2, p.211])

Given a ∈ C∞

0

(
B̃R (ξ0)

)
, there exist frozen operators Tlm (ξ0) over the ball

B̃R (ξ0) (m, l = 1, 2, ..., q), such that for any u ∈ C
2,α
X,0

(
B̃R (ξ0)

)

X̃mX̃l (au) = Tlm (ξ0) L̃0u+

q∑

i,j=1

ãij (ξ0)

{
q∑

k=1

T
ij
lm,k (ξ0) X̃ku+ T

ij
lm (ξ0)u

}
.

Also,

X̃mX̃l (au) = Tlm (ξ0) L̃u+ Tlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] X̃iX̃ju


+

+

q∑

i,j=1

ãij (ξ0)

{
q∑

k=1

T
ij
lm,k (ξ0) X̃ku+ T

ij
lm (ξ0)u

}
.

8



In order to make more readable the previous formulas, let us define:

TA
lm,k (ξ0) =

q∑

i,j=1

ãij (ξ0)T
ij
lm,k (ξ0)

TA
lm (ξ0) =

q∑

i,j=1

ãij (ξ0)T
ij
lm (ξ0)

hence

X̃mX̃l (au) = Tlm (ξ0) L̃u+ Tlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] X̃iX̃ju


 (2.2)

+

q∑

k=1

TA
lm,k (ξ0) X̃ku+ TA

lm (ξ0) u.

Remark 2.4 We note that by Theorem 1.6, the operators TA
lm,k (ξ0) , T

A
lm (ξ0)

satisfy the estimate:
∥∥TA

... (ξ0) f
∥∥
Cα(B̃r(ξ0)) ≤ CR,Λ ‖f‖Cα(B̃r(ξ0)) (2.3)

for any f ∈ Cα
X,0

(
B̃r (ξ0)

)
, where now the constant CR,Λ also depends on the

number Λ in (2.1).

We are going to see (2.2) as an identity involving a suitable integral operator,
to which apply the Banach-Caccioppoli fixed point theorem. To this aim, for a

fixed v ∈ C
2,α
X,0

(
B̃ (ξ0, R)

)
let

Gl,m = Tlm (ξ0) L̃v +

q∑

k=1

TA
lm,k (ξ0) X̃kv + TA

lm (ξ0) v (2.4)

hence by (2.3)

Gl,m ∈ Cα
X

(
B̃ (ξ0, R)

)

and

X̃mX̃l (av) = Gl,m + Tlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] X̃iX̃jv


 .

Now, for a number r < R to be fixed later, pick another β ∈ C∞

0

(
B̃r (ξ0)

)
such

that β = 1 in B̃r/2 (ξ0), and write

βX̃mX̃l (av) = βGl,m + βTlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] X̃iX̃jv



 . (2.5)
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Now, for any F = (Fij)
q
i,j=1 ∈

(
Cα

X,∗

(
B̃r (ξ0)

))q×q

, let us define the operator

T (F ) = βGl,m + βTlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij



 .

Theorem 2.5 For r > 0 small enough, the operator T is a contraction of(
Cα

X,∗ (Br (ξ0))
)q×q

in itself.

Proof. Since Fij ∈ Cα
∗

(
B̃r (ξ0)

)
, Fij can be extended to zero in B̃R (ξ0), hence

(see Proposition 1.3)

q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij ∈ Cα
X,0

(
B̃R (ξ0)

)
,

and by Theorem 1.6,

Tlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij


 ∈ Cα

X

(
B̃R (ξ0)

)

and

βTlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij



 ∈ Cα
X,∗

(
B̃r (ξ0)

)
.

Since also Gl,m ∈ Cα
X

(
B̃R (ξ0)

)
and βGl,m ∈ Cα

X,∗

(
B̃r (ξ0)

)
, we conclude

that T maps
(
Cα

X,∗ (Br (ξ0))
)q×q

in itself. In order to show that T is a con-

traction, let F (1), F (2) ∈
(
Cα

X,∗ (Br (ξ0))
)q×q

. We have, by Theorem 1.6 and
(1.2):

∥∥∥T F (1) − T F (2)
∥∥∥
(Cα

X(B̃r(ξ0)))
q×q

≤

q∑

l,m=1

∥∥∥∥∥∥
βTlm (ξ0)

q∑

i,j=1

[ãij(ξ0)− ãij(·)]
(
F

(1)
ij − F

(2)
ij

)
∥∥∥∥∥∥
Cα

X(B̃r(ξ0))

≤

q∑

l,m=1

q∑

i,j=1

c
∥∥∥[ãij(ξ0)− ãij(·)]

(
F

(1)
ij − F

(2)
ij

)∥∥∥
Cα

X(B̃r(ξ0))

≤ cω (r)
∥∥∥F (1) − F (2)

∥∥∥
(Cα

X(B̃r(ξ0)))
q×q

with
ω (r) = sup

i,j=1,2,...,q
|ãij |Cα

X(B̃R(ξ9)) r
α

Hence for r small enough T is a contraction of
(
Cα

X,∗ (Br (ξ0))
)q×q

in itself.
Next, we need the following similar result:
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Theorem 2.6 If v ∈ C
2,α
X,0

(
B̃ (ξ0, R)

)
, ãij , L̃v ∈ C

1,α
X

(
B̃R (ξ0)

)
and r is small

enough, the operator T is also a contraction of
(
C

1,α
X,∗

(
B̃r (ξ0)

))q×q

in itself.

Proof. We already know that

βGl,m = βTlm (ξ0) L̃v +

q∑

k=1

βTA
lm,k (ξ0) X̃kv + βTA

lm (ξ0) v ∈ Cα
X,0

(
B̃r (ξ0)

)
.

To show that also X̃h (βGl,m) ∈ Cα
X,∗

(
B̃r (ξ0)

)
, let us compute

X̃h (βGl,m) =
(
X̃hβ

)
Gl,m + β

{
X̃hTlm (ξ0) L̃v+

+

q∑

k=1

X̃hT
A
lm,k (ξ0) X̃kv + X̃hT

A
lm (ξ0) v

}

exploiting Theorem 1.7

=
(
X̃hβ

)
Gl,m + β

{(
q∑

s=1

T s
lm (ξ0) X̃s + T 0

lm (ξ0)

)
L̃v+

+

q∑

k=1

(
q∑

s=1

T
A,s
lm,k (ξ0) X̃s + T

A,0
lm,k (ξ0)

)
X̃kv

+

(
q∑

s=1

T
A,s
lm (ξ0) X̃s + T

A,0
lm (ξ0)

)
v

}
.

Recalling that v ∈ C
2,α
X,0

(
B̃R (ξ0)

)
by (2.3) we get that the quantity in {...}

belongs to Cα
X

(
B̃R (ξ0)

)
, hence by our choice of β,

X̃h (βGl,m) ∈ Cα
X,0

(
B̃r (ξ0)

)
⊂ Cα

X,∗

(
B̃r (ξ0)

)
.

As to the other term of T (F ),

βTlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij


 ,

for ãij ∈ C
1,α
X

(
B̃R (ξ0)

)
, Fij ∈ C

1,α
X,∗

(
B̃r (ξ0)

)
we can compute, by Theorem

1.7:

X̃k


βTlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij






= β






(
q∑

s=1

T s
lm (ξ0) X̃s + T 0

lm (ξ0)

)


q∑

i,j=1

[ãij(ξ0)− ãij(·)]Fij







+
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+
(
X̃kβ

)
Tlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij





= β





q∑

s=1

T s
lm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] X̃sFij



−

q∑

s=1

T s
lm (ξ0)




q∑

i,j=1

(
X̃sãij

)
Fij



+

+ T 0
lm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)]Fij






+

(
X̃kβ

)
Tlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij


 .

Since, under our assumptions, all the functions:

q∑

i,j=1

[ãij(ξ0)− ãij(·)] X̃sFij

q∑

i,j=1

(
X̃sãij

)
Fij

q∑

i,j=1

[ãij(ξ0)− ãij(·)]Fij

belong to Cα
X,∗

(
B̃r(ξ0)

)
⊂ Cα

X,0

(
B̃R(ξ0)

)
, by (2.3) and our choice of β we

conclude

X̃k


βTlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)] Fij




 ∈ Cα

X,∗

(
B̃r(ξ0)

)
,

hence T maps C1,α
X,∗

(
B̃r (ξ0)

)
in itself. Let us show that T is also a contraction

in C
1,α
X,∗

(
B̃r (ξ0)

)
. We already know that

∥∥∥T F (1) − T F (2)
∥∥∥
Cα

X(B̃r(ξ0))
q×q

≤ cω (r)
∥∥∥F (1) − F (2)

∥∥∥
(Cα

X(B̃r(ξ0)))
q×q

(2.6)

so let us compute

X̃kT F (1) − X̃kT F (2)

= β






q∑

s=1

T s
lm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)]
(
X̃sF

(1)
ij − X̃sF

(2)
ij

)




−

q∑

s=1

T s
lm (ξ0)




q∑

i,j=1

X̃sãij

(
F

(1)
ij − F

(2)
ij

)


+
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+ T 0
lm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)]
(
F

(1)
ij − F

(2)
ij

)






+

+
(
X̃kβ

)
Tlm (ξ0)




q∑

i,j=1

[ãij(ξ0)− ãij(·)]
(
F

(1)
ij − F

(2)
ij

)




≡ A+B + C +D.

Applying again Theorem 1.6 and (1.2),

‖A‖Cα
X(B̃r(ξ0)) ≤ cω (r)

∥∥∥XF
(1)
ij −XF

(2)
ij

∥∥∥
Cα

X(B̃r(ξ0))
(2.7)

≤ cω (r)
∥∥∥F (1)

ij − F
(2)
ij

∥∥∥
C1,α

X (B̃r(ξ0))

‖C‖Cα
X(B̃r(ξ0)) + ‖D‖Cα

X(B̃r(ξ0)) ≤ cω (r)
∥∥∥F (1)

ij − F
(2)
ij

∥∥∥
Cα

X(B̃r(ξ0))
(2.8)

‖B‖Cα
X(B̃r(ξ0)) ≤ c

q∑

s,i,j=1

‖Xãij‖Cα
X(B̃r(ξ0))

∥∥∥F (1)
ij − F

(2)
ij

∥∥∥
Cα

X(B̃r(ξ0))
.

To complete the bound on B, let us note that if g ∈ C
1,α
X,∗

(
B̃r (ξ0)

)
we have

‖g‖
∞

≤ sup
ξ,η∈B̃r(ξ0)

|g (ξ)− g (η)| ≤ |g|Cα(B̃r(ξ0)) (2r)
α

and applying (1.1) (seeing g as a function in C
1,α
X,0

(
B̃R (ξ0)

)
),

|g|Cα(B̃r(ξ0)) = sup
ξ,η∈B̃r(ξ0)

|g (ξ)− g (η)|

dX̃ (ξ, η)
α ≤ sup

B̃r(ξ0)

∣∣∣X̃g
∣∣∣ (2r)1−α

,

hence
‖g‖Cα

X(B̃r(ξ0)) ≤ ‖g‖C1,α

X (B̃r(ξ0))

(
(2r)

α
+ (2r)

1−α
)

and

‖B‖Cα
X(B̃r(ξ0)) ≤ c

q∑

s,i,j=1

∥∥∥X̃sãij

∥∥∥
Cα

X
(Br(ξ0))

(
(2r)

α
+ (2r)

1−α
)∥∥∥F (1)

ij − F
(2)
ij

∥∥∥
C1,α

X (B̃r(ξ0))
.

(2.9)
From (2.6), (2.7), (2.8), (2.9) we deduce that for r small enough

∥∥∥T F (1) − T F (2)
∥∥∥
(C1,α

X (B̃r(ξ0)))
q×q

≤ δ
∥∥∥F (1) − F (2)

∥∥∥
(C1,α

X
(Br(ξ0)))

q×q

with δ < 1, and we are done.
We now come to the
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Conclusion of the proof of Theorem 2.1. By Remark 2.2 it is enough to
prove the theorem for bi = c = 0. We will prove the regularity result for k = 1;
an iterative argument gives the general case. Also, once the Ck+2,α

X,loc (Ω) is proved

for every k, Hörmander’s condition implies that a solution u ∈ C
k+2,α
X,loc (Ω) for

any k is also smooth in Euclidean sense.
So, let u ∈ C

2,α
X (Ω) satisfy the equation

Lu ≡

q∑

i,j=1

aij (x)XiXju = f in Ω

and assume that
aij , f,∈ C

1,α
X (Ω) .

Fix x0 ∈ Ω and a small ball BR (x0) ⊂ Ω where the lifting procedure is applica-
ble. Let ξ0 = (x0, 0) , ξ = (x, h). Then by Proposition 1.5,

ũ (ξ) = u (x) ∈ C
2,α
X

(
B̃R (ξ0)

)
,

ãij (ξ) = aij (x) , f̃ (ξ) = f (x) ∈ C
1,α
X

(
B̃R (ξ0)

)

L̃ũ = f̃ in B̃R (ξ0) .

Then, let φ ∈ C∞

0

(
B̃r (ξ0)

)
such that φ = 1 in B̃r/2 (ξ0), hence v = φũ ∈

C
2,α
X,0

(
B̃R (ξ0)

)
and

L̃v = φf̃ + 2

q∑

i,j=1

ãijX̃iũX̃jφ+ ũL̃φ ≡ g ∈ C
1,α
X

(
B̃R (ξ0)

)
.

For this function v the representation formula (2.5) holds true, with Glm

given by (2.4). Let us define the number r, the cutoff function β and the operator

T as in Theorems 2.5, 2.6. Since
(
Cα

X,∗

(
B̃r (ξ0)

))q×q

and
(
C

1,α
X,∗

(
B̃r (ξ0)

))q×q

are Banach spaces, by the Banach-Caccioppoli Theorem the operator T pos-

sesses a unique fixed pointW both in
(
Cα

X,∗

(
B̃r (ξ0)

))q×q

and in
(
C

1,α
X,∗

(
B̃r (ξ0)

))q×q

.

On the other hand, since X̃iX̃jv ∈ Cα
X,∗

(
B̃r (ξ0)

)
, by (2.5) choosing a (ξ) = 1

in B̃R/2 (ξ0) ⊃ B̃r/2 (ξ0), we get

X̃iX̃jv (ξ) = W (ξ) in B̃r/2 (ξ0) ,

hence X̃iX̃jv ∈ C
1,α
X

(
B̃r/2 (ξ0)

)
and also X̃iX̃j ũ ∈ C

1,α
X

(
B̃r/2 (ξ0)

)
. By Propo-

sition 1.5 this implies
XiXju ∈ C

1,α
X

(
Br/4 (x0)

)

therefore u ∈ C
3,α
X

(
Br/4 (x0)

)
and by a covering argument u ∈ C

3,α
X,loc (Ω).
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3 Smoothness of solutions to quasilinear equa-

tions

Let us apply the previous linear theory to a regularity result for solutions to
quasilinear equations.

Theorem 3.1 Let

Qu ≡

q∑

i,j=1

aij (x, u,Xu)XiXju+ b (x, u,Xu)

where X1, X2, ..., Xq are as above, aij = aji,

Λ|ξ|2 ≤

q∑

i,j=1

aij (x, u, p) ξiξj ≤ Λ−1|ξ|2 ∀ξ ∈ R
q, (x, u, p) ∈ Ω× R× R

q.

and assume that for some k = 1, 2, 3, ..., α ∈ (0, 1)

aij , b ∈ C
k,α
X (Ω× R× R

q) .

If u ∈ C
2,α
X (Ω) solves the equation Qu = 0, then u ∈ C

k+2,α
X,loc (Ω). In particular,

if aij , b are smooth, then u is also smooth.

Proof. Under our assumptions we have that u is a solution to the linear equa-
tion

Lf (x) ≡

q∑

i,j=1

aij (x)XiXjf (x) = g (x)

where

aij (x) = aij (x, u (x) , Xu (x)) ∈ C
1,α
X (Ω)

g (x) = −b (x, u (x) , Xu (x)) ∈ C
1,α
X (Ω)

hence by Theorem 2.1, u ∈ C
3,α
X,loc (Ω); if k = 1 we are done, while if k ≥ 2,

since u ∈ C
3,α
X,loc (Ω) , then aij , g ∈ C

2,α
X,loc (Ω)

and by Theorem 2.1 u ∈ C
4,α
X,loc (Ω). Iteration gives the desired result. Again,

Hörmander’s condition assures that if u belongs to C
k+2,α
X,loc (Ω) for any k, then

it is also smooth in the Euclidean sense.

4 The evolution case

In virtue of the results contained in [2] all the previous theory can be developed
also in the evolution case. Let us consider the linear operator

H = ∂t −

q∑

i,j=1

aij (t, x)XiXj +

q∑

i=1

bi (t, x)Xi + c (t, x)
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where the Xi’s are still a system of Hörmander’s vector fields in a neighborhood
Ω0 of a bounded domain Ω, Q = (0, T ) × Ω. We define in Q the parabolic
distance

dP ((t, x) , (s, y)) =

√
dX (x, y)

2
+ |t− s|

and define the spaces Cα
P (Q) of Hölder continuous functions of exponent α with

respect to the distance dP , and the spaces Ck,α
P (Q) of functions such that all the

derivatives up to weight k with respect to the Xi’s and ∂t, with ∂t weighting as
a second order derivative, belong to Cα

P (Q). We assume with aij , bi, c ∈ Cα
P (Q)

for some α ∈ (0, 1), aij = aji satisfying the condition

Λ|ξ|2 ≤

q∑

i,j=1

aij (t, x) ξiξj ≤ Λ−1|ξ|2 ∀ξ ∈ R
q, (t, x) ∈ Q.

Then the same reasoning of §2 gives the following:

Theorem 4.1 Under the above assumptions, let u ∈ C
2,α
P (Q) satisfy the equa-

tion
Hu = f in Q

and assume that for some integer k = 1, 2, 3, ...we have:

aij , bi, c, f,∈ C
k,α
P (Q) .

Then
u ∈ C

k+2,α
P,loc (Q) .

In particular, in this case the a priori estimates proved in [2] apply:

‖u‖Ck+2,α

P
(Q′) 6 c

{
‖Hu‖Ck,α

P
(Q) + ‖u‖L∞(Q)

}

for any Q′ ⋐ Q, with constant c independent of u.
We also get the following quasilinear counterpart:

Theorem 4.2 Let

Qu ≡ ∂tu−

q∑

i,j=1

aij (t, x, u,Xu)XiXju+ b (t, x, u,Xu)

where X1, X2, ..., Xq are as above, aij = aji,

Λ|ξ|2 ≤

q∑

i,j=1

aij (t, x, u, p) ξiξj ≤ Λ−1|ξ|2

∀ξ ∈ R
q, (t, x, u, p) ∈ (0, T ) × Ω × R × R

q, and assume that for some k =
1, 2, 3, ..., α ∈ (0, 1)

aij , b ∈ C
k,α
P ((0, T )× Ω× R× R

q) .

If u ∈ C
2,α
P (Q) solves the equation Qu = 0, then u ∈ C

k+2,α
P,loc (Q). In particular,

if aij , b are smooth, then u is also smooth.
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