
Boll. Un. Mat. Ital. B (7) 7 (1993), no. 2, 413-430.

1

On the gradient of Schwarz symmetrization 
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Sunto.  Sia  uno spazio di Sobolev o Orlicz-Sobolev di funzioni non necessariamente nulle alf
bordo del dominio. Si danno condizioni sufficienti su una funzione non negativa in  affinche la´f
sua simmetrizzata di Schwarz appartenga ancora ad . Questi risultati sono ottenuti per mezzof
di disuguaglianze isoperimetriche relative e generalizzano in un certo senso un noto teorema di

Polya-Szegö. Si dimostra anche che il riarrangiamento di una qualsiasi funzione in  èf
localmente in .f

Abstract.  Let  be a Sobolev or Orlicz-Sobolev space of functions not necessarily vanishingf
at the boundary of the domain. We give sufficient conditions on a nonnegative function in  inf
order that its spherical rearrangement ("Schwartz symmetrization") still belongs to . Thesef
results are obtained via relative isoperimetric inequalities and somewhat generalize a well-

known Polya-Szegö's theorem. We also prove that the rearrangement of any function in  isf
locally in .f

 If u is a nonnegative function in H , u has compact support, and u denotes the Schwarz~"ß# 8Ðd Ñ
symmetrization of u, then a well known theorem by Polya-Szegö states that u belongs to H  and:~ "ß# 8Ðd Ñ

' ' Du dx     Du dx. (*)~± ± Ÿ ± ±# #

(Henceforth, we will indicate with D the gradient of a function of n variables or the derivative of a function of

one real variable).

 In particular, this formula holds for u H , where  is a bounded domain of , the first integral is− Ð Ñ d!
"ß# 8H H

taken on the ball  having the same measure of  and the second is taken on .
~
H H H

 If u is a function in H , not necessarily vanishing at the boundary, or if u belongs to H  but"ß#
!
"ß#Ð Ñ Ð ÑH H

assumes also negative values (and so does u), then inequality (*) can actually fail, and u does not necessarily~ ~

belong to H  (see examples below). So, a natural question is under which additional assumptions a"ß#Ð ÑH

nonnegative function in H H  has Schwarz symmetrization in H . In section 1 we will prove
~"ß# "ß#

!
"ß#Ð ÑÏ Ð Ñ Ð ÑH H H

some different sufficient conditions (in terms of the size of the set on which u vanishes) in order to a Polya-

Szegö-type estimate holds, that is:

' '
H H
~     Du dx    (const.)   Du dx.~ .± ± Ÿ ± ±# #

 Moreover, we will prove that whenever u is an H  function (even of changing sign), u belongs to~"ß#Ð ÑH

H  and for any ball  concentric to  and with measure , one has:
~ ~ ~

loc
"ß#Ð Ñ ± ± �H H H H %%

' '
H H
~
%
    Du dx    c( )   Du dx.~ .± ± Ÿ ± ±# #%

where c does not depend on u. (See section 2). All these results can naturally be generalized to Orlicz-

Sobolev spaces. This will be done in section 3.

 The interest in studying properties of the rearrangement of functions in H , or vanishing on part of the"ß#Ð ÑH
boundary, comes from the application of symmetrization techniques to elliptic or parabolic P.D.E.  with

boundary conditions of Neumann or mixed type: so thm. 2.1 and corollary 2.2 have been used in investigating

parabolic Neumann problems, see [2]. We also mention [8] , in which a similar result to thm. 1.3 is stated, in

a different context: this result is related to the study of elliptic mixed problems, which is carried out in [13].

Some notations and examples

 If u is a real measurable function defined on , we define:H
the distribution function of u:

. HÐ Ñ œ ± − Ð Ñ ā ± − dt x : u x t    for t  (0.1)š ›
(   denotes Lebesgue measure);± ±
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the decreasing rearrangement of u:

u  s   inf t : t s   for s [0, ]; (0.2)* Ð Ñ œ − d Ð Ñ Ÿ − ± ±š ›. H

the Schwarz symmetrization of u:

u x   u  c x   for x , (0.3)~ ~
Ð Ñ œ Ð ± ± Ñ −*

8
8 H

where  is the sphere centred at the origin with the same measure of ; c  is the measure of the unit ball in
~
H H 8

d8.

 For general properties of these functions, see [12]; note that, in our definition, u    and u assume also~*

negative values, if u is a function of changing sign, whereas rearrangements are sometimes defined for u .± ±
 From (0.3) it follows:

± Ð Ñ ± œ ± Ð ± ± Ñ ± ± ±Du x   n c Du c x x~ .
8 8

8 8�"*

(0.4)' '
H

H
~

0
*   Du x dx  n c   Du s  s ds.~± Ð Ñ ± œ Ð Ñ ± Ð Ñ ±# # # #�#Î8

8
"Î8 ± ±

Hence, if u H , u H ,  for any 0, so that u AC ,  for any 0.~ ~
− Ð Ñ − Ð ± ± Ñ ā − Ð ± ± Ñ ā"ß# "ß#H % H % % H %* *

 For better understanding the problem of assuring integrability of Du , let us consider the case of a~± ± #

radially symmetric and  function u defined on a ball , i.e.:increasing H

u x   u c x . (0.5)Ð Ñ œ Ð ± ± � ± ± Ñ* H 8
8

In this case one has:

' '
H

H
   Du x dx  n c  Du s  s ds. (0.6)± Ð Ñ ± œ Ð Ñ ± Ð Ñ ± Ð ± ± � Ñ# # # #�#Î8

8
"Î8 ± ±

0
* H

 Comparing (0.4) and (0.6) one sees how it may happen that u H  but u H . Take, for~ ~
− Ð Ñ Â Ð Ñ"ß# "ß#H H

instance, u s s  and u as in (0.5). Then:*Ð Ñ œ ± ± �È H

' '
H

H
   Du x dx    s ds    for every n 2, while:± Ð Ñ ± œ � _ �# "�#Î8Ð Ñ ± ±n c

4 0
8
"Î8 #

' '
H

H

H
~

n c

4 s0
s   Du x dx     ds    for every n.~± Ð Ñ ± œ œ _# Ð Ñ ± ±

± ±�
8
"Î8 # #�#Î8

 Similarly, if one defines:  u s s    and u as in (0.5), one has an example of a*Ð Ñ œ ± ± � � ± ±È ÈH H

(negative) function u H  such that u H .~ ~
− Ð Ñ Â Ð Ñ!

"ß# "ß#H H

Remark 0.1.  The above example works for n 2. If n 1 inequality (*) can actually be proved for any� œ
nonnegative function in H . (See [6], p.35). So in this paper we will always consider n 2."ß#Ð Ñ �H

1. Isoperimetric inequalities and  norm of the gradient of u~_#

 Here we want to obtain a proof of integrability of Du  without assuming that u vanishes at the~± ± #

boundary of . In what follows u will be a  function defined on . A first basic tool we need isH Hnonnegative

Federer's "coarea formula", as appears in [11]:

 if f  and v is a nonnegative Lipschitz function with compact support, then:− Ðd Ñ_" 8

' ' '
d Ö Ð Ñœ ×

�_
8�"8      f x Dv x dx   dt     f x dH x . (1.1)Ð Ñ ± Ð Ñ ± œ Ð Ñ Ð Ñ

0 x: v x t

(Here and below, H  stands for (n 1)-dimensional Hausdorff measure).8�" �
 Let us consider a nonnegative Lipschitz function u defined on . If  is Lipschitz, we can extend u to aH H
compact supported Lipschitz function on . Then, if f  and we put f 0 outside , (1.1) becomes:d − Ð Ñ ´8 "_ H H

' ' '
H H  f x Du x dx   dt     f x dH x . (1.2)Ð Ñ ± Ð Ñ ± œ Ð Ñ Ð Ñ

0 x : u x t

�_

Ö − Ð Ñœ × 8�"

From (1.2) it follows in particular:

' '
Ö − Ð Ñā ×

�_
8�"x : u x t tH   Du x dx         H x : u x d . (1.3)± Ð Ñ ± œ Ö − Ð Ñ œ ×H 0 0
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 Note that:

š › š ›x : u x   x : u x ,  and: (1.4)− Ð Ñ œ ª ` − Ð Ñ ā �H 0 H 0 H

H x : u x   P x : u x .8�"š › š ›− Ð Ñ œ � − Ð Ñ āH 0 H 0H

Here P  stands for the perimeter, in the sense of De Giorgi, relative to . For a definition of this concept inH H
the general case, see [9]. However, we will only use the fact that  P E   H E    for everyHÐ Ñ Ÿ Ð` Ñ �8�" H
measurable subset E of 0 , and, if E is sufficiently smooth, this is an equality. (See [4]). The perimeter of E,H `
P E , is equal to P E  when . We recall De Giorgi's isoperimetric inequality in :Ð Ñ Ð Ñ œ d dH H 8 8

P E   n c E .Ð Ñ � ± ±8
"Î8 "�"Î8

 The next theorem points out the role of isoperimetric inequalities in Polya-Szegö-type estimates.

Theorem 1.1.  Let  be a bounded Lipschitz domain in , n 2, u Lip , u 0 in , and assume thatH H Hd � − Ð Ñ �8

u satisfies:

P x : u x t   t (1.5).
Hš ›− Ð Ñ ā � Ð ÑH # . "�"Î8

for some positive constant , any t 0. (Here and below,  is the distribution function of u, defined in (0.1)).# .�
 Then u Lip , and:~ ~

− Ð ÑH

' 'Š ‹H H#
~

n c   Du dx       Du dx. (1.6)~± ± Ÿ ± ±# #
#

8
"Î8

Proof. (Here we revise an argument of [11]). Let us prove that u is Lipschitz. If L is a constant such that~

± Ð Ñ ± Ÿ � �Du x L in , and t, h such that 0 h t, then:H

L t h t        Du x dx          (by (1.3), (1.4))Ò Ð � Ñ � Ð ÑÓ � ± Ð Ñ ± œ. . '
Ö − � � Ð ÑŸ ×x : t h u x tH

œ − Ð Ñ ā � Ð Ñ �  P x : u x d   (by (1.5))   d  ' 'š ›
t h t h

t t

� �
"�"Î8

H H 0 0 # . 0 0

� Ð Ñ (by monotonicity of )  h t .. .. # . "�"Î8

 Hence  is strictly decreasing in 0, u , so that u  is continuous and satisfies:. Ð ² ² Ñ_
*

u s u s k   s k .* * LÐ Ñ � Ð � Ñ Ÿ
#

�"�"Î8

for any k 0, s, s k 0, . Therefore u AC ,  for any 0 and:ā � − Ð ± ± Ñ − Ð ± ± Ñ āH % H %*

0  s    s . (1.7)Ÿ � Ð Ñ Ÿdu L
ds

*

#
�"�"Î8

By the definition of u and (1.7) one can compute:~

± Ð Ñ � Ð Ñ ± œ ± Ð Ñ ± Ÿ ± � ±u x u y   s ds   L  y x~ ~ '
c y

c x du n c
ds8

8
8

8
8
"Î8

± ±

± ± *

#

that is u is Lipschitz in .~ H

 Let us prove now that (1.6) holds. From (1.3)-(1.4) it follows:

� ± Ð Ñ ± œ − Ð Ñ ā � Ð Ñd
dt x : u x t

     Du x dx      P x : u x t   (by (1.5))  t . (1.8).' š ›Ö − Ð Ñā ×
"�"Î8

H H H # .

From (1.2) it follows that:

: 0Ð Ñ ´ ± Ð Ñ ± œ ± ± Ð Ñt     Du x dx    d    Du dH x' ' '
Ö − Ð Ñā × Ö − Ð Ñœ ×

# �_
8�"x : u x t t x : u xH H 0

from which one reads that  is absolutely continuous, so that::

' '
H  Du dx    0     t dt. (1.9)± ± œ Ð Ñ œ � wÐ Ñ# �_

: :
0

Writing differential quotients and applying Holder's inequality one has:
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� wÐ Ñ � Ò � ± Ð Ñ ± Ó: t          Du x dx . (1.10)1 d
t dt x : u x t� wÐ Ñ Ö − Ð Ñā ×

#
. H

'
 From (1.8), (1.9), (1.10) it follows:

' '
H

.
.

   Du dx       dt. (1.11)± ± �# # �_ Ð Ñ
� wÐ Ñ

#
0

t

t

#�#Î8

 Now consider u. Since its level sets are balls, in (1.10) the equal sign holds, and (1.8) becomes:~

� ± ± œ Ð Ñd
dt x : u x t

~ ~      Du  dx       n c  t~'
Ö − Ð Ñā × 8

"Î8 "�"Î8
H .

Hence:

' 'Š ‹H
.

.
~

0

t

t
   Du dx  n c     dt. (1.12)~± ± œ#

8
"Î8

# �_ Ð Ñ
� wÐ Ñ

#�#Î8

From (1.11)-(1.12) it follows estimate (1.6). �

 Now we are interested in discussing sufficient conditions in order that (1.5) holds. In the following the

function u is still supposed nonnegative and Lipschitz in .H

( )  If u 0 on , we obtain Polya-Szegö's theorem, since:i œ `H

P x : u x t   P x: u x t   n c t , .
Hš › š ›− Ð Ñ ā œ Ð Ñ ā � Ð ÑH .8

"Î8 "�"Î8

by the isoperimetric inequality in .  So n c , and (1.6) holds with constant equal to 1.d œ8
8
"Î8

#

( ) Suppose that: support of u   .  The  isoperimetric inequality of  says that:ii relative± ± Ÿ ± ±H
2

H

Q P E   min E , E (1.13).
HÐ Ñ � ± ± ± Ï ±Š ‹H

"�Î8

for some constant Q 0, any measurable set E . (Such an inequality certainly holds if  is Lipschitz).ā © H H
Then:

P x : u x t   Q t , (1.14)Hš ›− Ð Ñ ā � Ð ÑH .�" "�"Î8

and (1.5) holds with Q .# œ �"

( ) More generally, suppose that:iii

± − Ð Ñ œ ± œš ›x : u x 0   H %

with  0 .   Fix t 0. If t  , (1.14) still holds. Otherwise, from (1.13) we get:� � ā Ð Ñ Ÿ% .± ± ± ±H H
2 2

Q P x : u x t   t   t.
Hš › Š ‹− Ð Ñ ā � ± ± � Ð Ñ � Ò Ð ÑÓH H . !.

"�"Î8
"�"Î8

with  .  Hence (1.5) holds with:! œ %
H %± ±�

# !  Q    Q .œ œ�" "�"Î8 �"
± ±�

"�"Î8Š ‹%
H %

and (1.6) holds with constant:

Š ‹Q n c8
"Î8

"�"Î8!

#

.

( ) Now, suppose that:iv

H x : u x 0   0.8�"š ›− ` Ð Ñ œ œ āH %

We also suppose that  satisfies the following geometric property (this already appears in [10]):H

H E   P E (1.15).
8�"Š ‹` � ` Ÿ Ð ÑH V H
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for some positive constant , for any measurable E  such that E  . (If  is Lipschitz, (1.15)V H H© ± ± Ÿ ± ±H
2

actually holds).

 Fix t 0. Again, we consider the case t ; then, by (1.15):ā Ð Ñ ā. ± ±H
2

H x : u x t   P x : u x t ..
8�"Š š › ‹ š ›` − Ð Ñ Ÿ � ` Ÿ − Ð Ñ ŸH H V HH

 Hence:

P x : u x t   P x : u x t   H Hš › š ›− Ð Ñ ā œ − Ð Ñ Ÿ �H H

� ` − Ð Ñ Ÿ � ` � − ` Ð Ñ œ œ H x : u x t   H x : u x 0  1 1
V V8�" 8�"Š š › ‹ š ›H H H

œ �   .% %
V V H

.Š ‹Ð Ñ
± ±

"�"Î8
t

 So (1.5) holds with:

# œ min Q , Š ‹�"
± ±

%
V H "�"Î8

and (1.6) holds with constant:

max Q n c , .ā ŸŠ ‹ Š ‹8
"Î8 ± ±

#

V H
%

n c8
"Î8 "�"Î8

 Note that:         ,     which is a more expressive ratio.
n c H
8
"Î8 "�"Î8 8�"± ± `H

% %

H
Ÿ

Š ‹

( )  Suppose that E x : u x 0  is such that its projection on at least one hyperplane has positivev œ − Ð Ñ œš ›H

(n 1)-dimensional Hausdorff measure,  in symbols:�

H E   0  for some projection .8�"Š ‹C % CÐ Ñ œ ā

For any t 0, the set A u t  contains E, so:ā œ Ö Ÿ ×

P A   H A   H A   H E   .Ð Ñ œ Ð` Ñ � Ð Ñ � Ð Ñ œ8�" 8�" 8�"Š ‹ Š ‹C C %

 Now,  if t , one has:.Ð Ñ ā ± ±H
2

V H.P u t   H u t .HÖ ā × � ` Ÿ � `8�"Š š › ‹
Hence:

P u t    P u t       . H V V V
% % .

H
Ö ā × � Ö Ÿ × � �1

1 1 1

t

� � �
Ð Ñ
± ±

"�"Î8

"�"Î8

So (1.5) holds with:

# œ min Q , .Š ‹�"
Ð � Ñ± ±

%
V H1 "�"Î8

 Now we state separately the results obtained from ( )-( )-( ).iii iv v

Theorem 1.2. Let  be a bounded Lipschitz domain in , n 2; let u H , u 0 in , and supposeH H Hd � − Ð Ñ �8 "ß#

that support of u  for some 0.   Then u H  and:~ ~
± ± œ ± ± � ā − Ð ÑH % % H!

"ß#

' '
H H
~     Du dx   L   Du dx (1.16)~ .± ± Ÿ ± ±# # #

with L ,  where Q is as in (1.13) and:    if  ; 1 otherwise.œ œ Ÿ œŠ ‹Q n c

2
8
"Î8

"�"Î8!
%

H %
H! % !± ±�
± ±
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Theorem 1.3. Let  be as above, let u 0, u , where  is the closure in H -norm of the space:H [ [� − "ß#

[ : H :w ´ − Ð Ñ � œ gš ›Lip : supp F

and F is a fixed closed subset of  with  H F 0. Then u H  and (1.16) holds with:~ ~
` Ð Ñ œ ā − Ð ÑH % H8�" !

"ß#

L max Q n c , (1.17)œ ā ŸŠ ‹ Š ‹8
"Î8 ± ±V H

%
n c8
"Î8 "�"Î8

and  as in (1.15).V

Theorem 1.4. Let  be as above, let u 0, u , where  is the closure in H -norm of the space:H [ [� − "ß#

[ : H : Hw ´ − Ð Ñ © Ïš ›Lip : supp   F

where F is a closed subset of  with the property stated in ( ). Then u H  and (1.16) holds with:~ ~
H Hv − Ð Ñ!

"ß#

L max Q n c , .œ ā ŸŠ ‹ Š ‹8
"Î8 Ð � Ñ ± ±V H

%
1 n c8

"Î8 "�"Î8

Remark 1.5. We note that the spaces  defined in thms. 1.3-1.4 are properly contained in H  whenever[ H"ß#Ð Ñ
F has positive capacity. This is the case, in particular, if F has positive n 1 -measure. Moreover, if F hasÐ � Ñ
(positive and) finite n 1 -measure and is a set in the sense of geometric measure theory (that is a.Ð � Ñ  regular 

e. H  point of F is a density point in sense H ) then property ( ) is certainly satisfied. (See [5], p.87).Ð Ñ8�" 8�" v

Proof of theorem 1.2.   If u H , u 0 and  is Lipschitz, u may be approximated in H -norm with− Ð Ñ �"ß# "ß#H H

smooth functions u  in . (See [1], thm. 3.18). Moreover, if the support of u has measure , then for7 H H %± ± �
any 0,  u  can be choosen such that:% %" 7− Ð Ñ Ö ×

± − Ð Ñ œ ± �š ›x : u x 0   .H %7 "

 Hence, for every m, u  satisfies (1.16) (with  replaced by ), so that u  is a bounded sequence in~
7 " 7% % š ›

H . Let u  be a subsequence converging to some v H  weakly in H  and strongly in . By [3],
~ ~~

! !
"ß# "ß#

7
"ß# #Ð Ñ − Ð ÑH H _

u u in  implies u u in , so v u and u H . Then from weak convergence it~ ~ ~ ~~ ~
7 7

# #
!
"ß#Ä Ð Ñ Ä Ð Ñ ´ − Ð Ñ_ H _ H H

follows that u satisfies (1.16) for any , and hence for , too.% % %" � �

Proof of theorem 1.3. If u , u u in H , then u  satisfies (1.16)-(1.17). Hence arguing as7 7 7
"ß#− w Ä Ð Ñ[ H

above, it follows that these hold for u. Note that the condition supp u F  implies that supp7 � œ g ±

u | ; hence u H , and so does u.~ ~
7 7 !

"ß#± � ± − Ð ÑH H �

 In a similar way it follows theorem 1.4. Incidentally, we note that a Sobolev embedding theorem for

functions vanishing on part of the boundary can be derived from thm. 1.3:

Corollary 1.6. Let u , where  is as in theorem 1.3 or 1.4. Then the following estimate holds:− [ [

² ² Ÿ ² ²u   const. Du . (1.18).
_ H _ H#‡ #Ð Ñ Ð Ñ

Proof. It is sufficient to prove (1.18) for u 0. Then u H , so by Sobolev's embedding theorem and~ ~
� − Ð Ñ!

"ß# H

theorem 1.3 (or 1.4) one has:

² ² œ ² ² Ÿ ² ² Ÿ ² ²u   u   C Du   C Du    ~ ~. .
_ H _ H _ H _ H#‡ # #‡ #Ð Ñ Ð Ñ Ð Ñ Ð Ñ~ ~ �

2. Local integrability of Du  for u H~± ± − Ð Ñ# "ß# H

 Theorem 1.2 allows us to prove the following result, which holds for  function u H  (evenany − Ð Ñ"ß# H
assuming negative values):

Theorem 2.1. Let  be as in theorem 1.2, u H . Then u H  and, for any 0, one has:~ ~
H H H %− Ð Ñ − Ð Ñ ā"ß# "ß#

loc
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' 'Š ‹H H
~
%
    Du dx   c Q n c   Du dx~ . .± ± Ÿ Ð Ñ ± ±# #

8
"Î8

#

%

where  is the sphere centred at the origin with measure   and:
~
H H %% ± ± �

c    if  ,  c 1 otherwise.Ð Ñ œ Ÿ Ð Ñ œ% % %Š ‹± ±� ± ±
#�#Î8

H % H
% 2

 Moreover, u AC , .* − Ð ± ± � Ñ% H %

Proof. Put h u , and let u , u  be the positive and negative parts of u h . Then u H , suppœ Ð Ñ Ð � Ñ − Ð Ñ ±*
2

± ±
" # 3

"ß#H H

u   ( 1,2). So by theorem 1.2  u H  and:~ ~
3 3

± ± "ß#
!± Ÿ 3 œ − Ð ÑH

2
H

' 'Š ‹H H
~    Du dx   Q n c   Du dx.~ .± ± Ÿ ± ±3 3

# #
8
"Î8

#

In particular, u  AC ,  for any 0. Now, noting that:3
* − Ð ± ± Ñ ā% H %

Ð Ñ Ð Ñ œ Ð Ñ Ð Ñ Ñv s   v s (2.1� �* *

Ð Ñ Ð Ñ œ Ð Ñ Ð ± ± � Ñ Ñv s   v s (2.2� �* * H

one has:

Ð � Ñ − Ð ± ± Ñ Ð � Ñ − Ð ± ± � Ñu h AC , ,  u h AC 0, , so that:* *� �% H H %

u AC ,   for any 0. (2.3* − Ð ± ± � Ñ ā Ñ% H % %

 Note also that:

Ð � Ñ œ Ð � Ñu h   u h (2.4)
~ � �~

whereas the same is  true for the part.  To handle the gradient of u h , let us observe that, for
~

not negative Ð � Ñ
�

any 0, one has, by (0.4):% ā

' 'Š ‹H H

H %
~ *

%
   D u h dx  n c  s Du s ds (2.5)

~
± Ð � Ñ ± œ ± Ð Ñ ±

� # #�#Î8 #
8
"Î8

#

± ±

± ±�
"
#

while, by (0.4) and (2.2):

' 'Š ‹H %

H
~ *

%
   D u h  dx  n c  s Du s ds (2.6)~± Ð � Ñ ± œ ± Ð ± ± � Ñ ± œ� # #�#Î8 #

8
"Î8

# ± ±"
# H

œ ± ± � ± Ð Ñ ± n c  s Du s ds.Š ‹ Š ‹'8
"Î8

# #�#Î8

± ±

± ±� #
"
# H

H %
H *

 Comparing (2.5) and (2.6) we can write:

' 'Š ‹H H
H %
%

~ ~
% %
   D u h dx      D u h  dx. (2.7)

~
~± Ð � Ñ ± Ÿ ± Ð � Ñ ±

� # � #± ±�
#�#Î8

 Finally, we can estimate:

' ' '
H H H
~ ~ ~
% % %
    Du x dx       D u h dx      D u h dx  (by (2.4), (2.7))~ ~ ~
± Ð Ñ ± œ ± Ð � Ñ ± � ± Ð � Ñ ± Ÿ# # #� �

Ÿ ± ± � ± ± Ÿ    Du dx     Du dx  (by (2.1))~ ~' 'Š ‹H H
H %
%

~ ~" #
# #± ±�

#�#Î8

Ÿ ± ± � ± ± œ Q n c  max 1,    Du dx     Du dx  . .Š ‹ Š Š ‹ ‹ ā Ÿ' '8
"Î8

# #�#Î8
± ±�

" #
# #H %

% H H

œ ± ± Q n c  max 1,   Du dx.. .Š ‹ Š Š ‹ ‹ '8
"Î8

# #�#Î8
± ±� #H %

% H
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 So the theorem is completely proved. �

 From the previous theorem it follows the next estimate, giving an approximation result for rearrangements:

Corollary 2.2.  Let  be as above, u, v H . Then for any 0 one has:H H %− Ð Ñ ā"ß#

   sup u v s   c n,Q, u v   
s ,− Ð ± ± � Ñ

± Ð � ÑÐ Ñ ± Ÿ Ð ± ± Ñ ² � ² �
% H %

H* *
" #

� Ð ± ± Ñ ² � ² ² ² � ² ² c ,n,Q, u v Du   Dv ..
# # #

"Î#
#

"Î#

% H š ›
 In particular, if u  is a sequence of H  functions converging to u in H , then u  converges to u7

"ß# "ß#
7Ð ÑH * *

uniformly in ,  for any 0.Ð ± ± � Ñ ā% H % %
Proof.  We start by noting that if  is an absolutely continuous function on a,b , then:: Ò Ó

: : 5 5 : 5 5Ð Ñ Ÿ Ð Ñ � ± wÐ Ñ ±s    d   d1
b a a a

b b

�
' '

for every s a,b . Applying this formula to the function:− Ò Ó

: % H %Ð Ñ œ Ð Ñ � Ð Ñ Ð ± ± � Ñs u s u s     on the interval ,Š ‹* *
7

#

we have, by Hölder's inequality:

Š ‹ 'u s u s     u u d  * * * *1
27 7

#

± ±�

± ±� #Ð Ñ � Ð Ñ Ÿ ± Ð Ñ � Ð Ñ ± �
H % %

H %
5 5 5

� Ò ± Ð Ñ � Ð Ñ ± Ó Ò ± Ð Ñ � Ð Ñ ± Ó ´ 2  u u d  d  .Š ‹ Š ‹' '
% %

H % H %

5 5

± ±� ± ±��"�"Î8 # "�"Î8 #
75 5 5 5 5 5 5 5* * du

d d
du

" "
# #

7
* *

´ �A   2B C . (2.8).
7 7 7

 Now:

A   u u    and: (2.9)7 7± ±� #
#Ÿ ² � ²1

2H %

B   u u  ,  while: (2.10)7 7 #
�"�"Î8Ÿ ² � ²%

C    d    d  7
± ±� ± ±�"�"Î8 # "�"Î8 #Ÿ Ò ± Ð Ñ ± Ó � Ò ± Ð Ñ ± Ó œŠ ‹ Š ‹' '

0 0

du

d d
duH % H %

5 5
5 5 5 5 5 5

* *
7

" "
# #

œ ± ± � ± ± Ÿ     Du dx       Du dx   (by thm. 2.1)~ ~Š ‹ Š ‹' '
H H
~ ~
% %

7
# #

" "
# #

Ÿ Ð ± ± Ñ ² ² � ² ² c n,Q, Du   Du . (2.11).H š ›7 # #

 Collecting (2.8), (2.9), (2.10), (2.11) one gets the result. �

3. Extension to Orlicz-Sobolev spaces

 Let A: 0, 0,  be an "N-function" (see [7]), that is A is an increasing continuous convexÒ �_Ñp Ò �_Ñ
function, such that:

lim     0;     lim     .
t 0 tÄ

œ œ �_
Ä �_

A t A t

t t

Ð Ñ Ð Ñ

 By Jensen's inequality, we can repeat the proof of theorem 1.1 and obtain, under the same assumptions:

' ' Š ‹H
# .

.
   A Du x dx  A ( t dt (3.1)Ð ± Ð Ñ ± Ñ � � wÐ ÑÑ

0

t

t

�_ Ð Ñ
� wÐ Ñ

"�"Î8

.

' ' Š ‹H
.
.

~
0

n c  t

t
   A Du x dx  A ( t dt (3.2)~Ð ± Ð Ñ ± Ñ œ � wÐ ÑÑ

�_ Ð Ñ
� wÐ Ñ

8
"Î8 "�"Î8

.

 We can rewrite (3.1)-(3.2) replacing A r  with A  for any fixed 0.Ð Ñ Ð Ñ ār
-

-
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Then, choosing      we get:-! œ
n c8
"Î8

#

' '
H H-
~

Du~
   A dx     A Du dx. (3.3)Ð Ñ Ÿ Ð ± ± Ñ± ±

!

 Now, recall that the natural norm in the Orlicz space:

_ H H H -A
uÐ Ñ ´ Ä Ð Ñ � �_ ā  u: , u measurable such that   A dx    for some 0š ›'

H -
± ±

is:  u   inf 0:   A dx 1 .² ² ´ ā Ð Ñ ŸA
uš ›'- H -
± ±

 Rewriting again (3.3) with A r  replaced by A , and choosing Du  we get:Ð Ñ Ð Ñ œ ² ²r
A-

-

'
H -
~

Du x~

Du
   A dx  1.   Hence:Ð Ñ Ÿ± Ð Ñ±

² ²! A

² ² Ÿ ² ²Du     Du . (3.4)~
_ H # _ HA AÐ Ñ Ð Ñ~ n cŠ ‹8

"Î8

 So we have proved the following:

Theorem 3.1. Let  and A be as above, let u be a nonnegative Lipschitz function in , such that one of theH H
following holds:

( )  u 0 in E   with  E 0i œ © ± ± œ āH %
( ) u 0 in F   with H F 0ii œ © ` Ð Ñ œ āH %8�"

( ) u 0 in G   with  H G 0  for some projection  (see section 1).iii œ © Ð Ñ œ āH C % C8�"Š ‹
 Then u Lip  and (3.4) holds, with  possibly depending on n, , Q, , .~ ~

− Ð Ñ ± ±H # V H %

Remark 3.2. We did not state the previous theorem for u H  because to apply a limit process as in− Ð Ñ"_ HA

the proof of theorems (1.2)-(1.3)-(1.4) we have to know that a bounded sequence in H  has a weakly"_ HAÐ Ñ
converging subsequence. This cannot be assured without further assumptions on A. To discuss this fact, we

recall some results from the theory of Orlicz-Sobolev spaces. (See [1]).

 We say that A satisfies a "global -condition" if:?#

A 2t   A t    for some 0, any t 0. (3.5)Ð Ñ Ÿ Ð Ñ ā ā$ $

 We say that A satisfies a " -condition near infinity"  if (3.5) holds only for any t t  , for some t 0.?# ! !� ā
We say that A,  is -regular if: A satisfies a global -condition, or: A satisfies a -condition nearÐ ÑH ? ? ?# #

infinity and . If A,  is -regular, then  and H  are reflexive spaces; if  is± ± � �_ Ð Ñ Ð Ñ Ð ÑH H ? _ H _ H HA A
"

Lipschitz then  is dense in H ; if  then  is continuously embedded inV H _ H H _ H_ "Ð Ñ Ð Ñ ± ± � �_ Ð ÑA A

_ H"Ð Ñ. Using these facts one can repeat the proofs of theorems (1.2)-(1.3)-(1.4) to get the following:

Theorem 3.3.  Let , A be as above. Suppose that A satisfies a -condition near infinity, and let u satisfyH ?#

the assumptions of one of theorems 1.2, 1.3, 1.4, with H  replaced by H . Then u H~"ß# " "
!Ð Ñ Ð Ñ − Ð ÑH _ H _ HA A

and (3.4) holds, with  possibly depending on n, , Q, , .# V H %± ±

Example. An example of Orlicz-Sobolev space which does not reduce to a standard Sobolev space and

satisfies the previous theorem is the one defined by A r r 1 r    with p 1.Ð Ñ œ Ð � Ñ �: log

 Now we are interested in stating an analogue of theorem 2.1 for Orlicz-Sobolev spaces. We first consider

the case of a Lipschitz function u. The analogue of formula (0.4) is:

' ' Š ‹H

H
~

0
*   A Du x dx   A n c Du s  s ds.~Ð ± Ð Ñ ± Ñ œ ± Ð Ñ ±

± ±
8
"Î8 "�"Î8

 Arguing as in section 2 one gets:

' 'Š ‹ Š ‹H H

H %
~ *

%
   A D u h dx   A n c Du s  s ds (3.6)

~
± Ð � Ñ ± œ ± Ð Ñ ±

�

± ±

± ±�
8
"Î8 "�"Î8

"
#
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' 'Š ‹ Š ‹H H

H %
~ *

%
   A D u h  dx   A n c Du s  s ds. (3.7)~± Ð � Ñ ± œ ± Ð Ñ ± Ð ± ± � Ñ� "�"Î8

± ±

± ±�
8
"Î8

"
#

H

 Comparing (3.6)-(3.7) one can write:

' 'Š ‹ Š ‹H H-
~ ~

D u h
~

% %
   A dx     A D u h  dx (3.8)~

± Ð � Ñ ± �
�

Ÿ ± Ð � Ñ ±

with   (we take  , so 1).- % -œ � āŠ ‹± ±� ± ±
"�"Î8

H % H
% 2

 Applying (3.3) to the positive and negative parts of u h  we get, by (3.8):Ð � Ñ

' ' š Š ‹ Š ‹›H H- - -
~ ~

Du D u h D u h~ ~ ~

   A dx      A   A dx Ð Ñ œ � Ÿ± ± ± Ð � Ñ ± ± Ð � Ñ ±

%

� �

Ÿ ± Ð � Ñ ± � ± Ð � Ñ ± Ÿ     A D u h    A D u h  dx ~ ~' š Š ‹ Š ‹›H
~
%

� �

Ÿ ± Ð � Ñ ± � ± Ð � Ñ ± œ    A D u h   A D u h dx ' š Š ‹ Š ‹›H - -! !
� �

œ ± ± œ   A Du dx    with Q n c . ' Š ‹H - -! ! 8
"Î8

 Again, rewriting the previous inequality for A  instead of A r  and choosing Du  we find:Ð Ñ Ð Ñ œ ² ²r
A3

3 -!

² ² Ÿ ² ²Du    Q n c Du (3.9)~
_ H

H %
% _ HA AÐ Ñ 8

"Î8 ± ±�
"�"Î8

Ð Ñ~
%

Š ‹Š ‹
for every 0, .% − Ð Ñ± ±H

2

 This holds for every Lipschitz function u defined in . From this fact we get, by approximation withH
smooth functions:

Theorem 3.4.  Let , A be as in theorem 3.3. If u H  then u H  and (3.9) holds.~H _ H _ H− Ð Ñ − Ð Ñ" "
A Aloc

Moreover, u AC ,  for every 0.*
loc− Ð ± ± � Ñ ā% H % %
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