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On the gradient of Schwarz symmetrization
of functions in Sobolev spaces
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Sunto. Sia S uno spazio di Sobolev o Orlicz-Sobolev di funzioni non necessariamente nulle al
bordo del dominio. Si danno condizioni sufficienti su una funzione non negativa in S affinché la
sua simmetrizzata di Schwarz appartenga ancora ad S. Questi risultati sono ottenuti per mezzo
di disuguaglianze isoperimetriche relative e generalizzano in un certo senso un noto teorema di
Polya-Szegs. Si dimostra anche che il riarrangiamento di una qualsiasi funzione in S &
localmente in S.

Abstract. Let S be a Sobolev or Orlicz-Sobolev space of functions not necessarily vanishing
at the boundary of the domain. We give sufficient conditions on a nonnegative function in S in
order that its spherical rearrangement ("Schwartz symmetrization") still belongs to S. These
results are obtained via relative isoperimetric inequalities and somewhat generalize a well-
known Polya-Szegd's theorem. We also prove that the rearrangement of any function in S is
locally in S.

If u is a nonnegative function in H%?(R"), u has compact support, and @i denotes the Schwarz
symmetrization of u, then a well known theorem by Polya-Szegé states that i belongs to H2(R") and:

[ |Du|?dx < [ |Dul?dx. (*)

(Henceforth, we will indicate with D the gradient of a function of n variables or the derivative of a function of
one real variable).

In particular, this formula holds for u € H(l)"2 (Q), where 2 is a bounded domain of ", the first integral is
taken on the ball ) having the same measure of  and the second is taken on (.

If u is a function in H?(Q), not necessarily vanishing at the boundary, or if u belongs to Hy*(€) but
assumes also negative values (and so does i), then inequality (*) can actually fail, and i does not necessarily
belong to H(Q) (see examples below). So, a natural question is under which additional assumptions a
nonnegative function in H'2(€2)\Hy”(2) has Schwarz symmetrization in H'((}). In section 1 we will prove
some different sufficient conditions (in terms of the size of the set on which u vanishes) in order to a Polya-
Szego-type estimate holds, that is:

Js |Du|%dx < (const) [, |Du|?dx.

Moreover, we will prove that whenever u is an H'?(Q2) function (even of changing sign), & belongs to

H,.2(€}) and for any ball 3. concentric to {2 and with measure | Q | — e, one has:

Jo, IDE|%dx < c(e)f, |Du|?dx.

where ¢ does not depend on u. (See section 2). All these results can naturally be generalized to Orlicz-
Sobolev spaces. This will be done in section 3.

The interest in studying properties of the rearrangement of functions in H'?(£2), or vanishing on part of the
boundary, comes from the application of symmetrization techniques to elliptic or parabolic P.D.E. with
boundary conditions of Neumann or mixed type: so thm. 2.1 and corollary 2.2 have been used in investigating
parabolic Neumann problems, see [2]. We also mention [8] , in which a similar result to thm. 1.3 is stated, in
a different context: this result is related to the study of elliptic mixed problems, which is carried out in [13].

Some notations and examples

If u is a real measurable function defined on €2, we define:
the distribution function of u:

u(t) = | {x €Qulx) > t} | forte R 0.1)

(| | denotes Lebesgue measure);



the decreasing rearrangement of u:
ot (s) = inf{te R: pu(t) < s} fors € [0, | Q] 1; 0.2)

the Schwarz symmetrization of u:

i(x) = u" (c,|x]|") forx € Q, (0.3)
where () is the sphere centred at the origin with the same measure of €2; ¢, is the measure of the unit ball in
R

For general properties of these functions, see [12]; note that, in our definition, u"  and @ assume also

negative values, if u is a function of changing sign, whereas rearrangements are sometimes defined for |u | .
From (0.3) it follows:

| DU(x) | = nc, |Du'(c, |x|™) | |x|"!
(0.4)
Ja IDEk) [*dx = (ncvlv//ny folm | Du"(s) | 2 s*72/" ds.

Hence, if i € H'?(Q), u" € H'?(¢, | Q| ) for any € > 0, so thatu” € AC(e, | Q| ) for any € > 0.
For better understanding the problem of assuring integrability of | Dii | 2, let us consider the case of a
radially symmetric and increasing function u defined on a ball €, i.e.:

u(x) = u(|Q] —ca|x|™). (0.5)
In this case one has:
Jo I1Du(0)|2dx = (nei™)? ;7 |Du'(s) |2 (| Q] —s)* /" ds. 0.6)

Comparing (0.4) and (0.6) one sees how it may happen that u € H'?(Q) but & ¢ H'?({}). Take, for
instance, u”(s) =/ | Q| —s and u as in (0.5). Then:

1/nys
Jo |Du(x)|?dx = W O|Q| s'=%/"ds < oo for every n > 2, while:

(n 071/”)2 Q| §2-2/n

Ja IDEG) [#dx = 5= 7 o=

ds = oo forevery n.

Similarly, if one defines: u’(s)=+/[Q| —s — /| Q| and u as in (0.5), one has an example of a
(negative) function u € Hy?(Q) such that & ¢ H"2({2).

Remark 0.1. The above example works for n > 2. If n = 1 inequality (¥) can actually be proved for any
nonnegative function in H-2(Q). (See [6], p.35). So in this paper we will always consider n > 2.

1. Isoperimetric inequalities and £2 norm of the gradient of @i

Here we want to obtain a proof of integrability of | Dii | > without assuming that u vanishes at the
boundary of 2. In what follows u will be a nonnegative function defined on 2. A first basic tool we need is
Federer's "coarea formula", as appears in [11]:

if f € £L'(R") and v is a nonnegative Lipschitz function with compact support, then:

S FOOIDV) [ dx = [ dt [ ygmg T dH, 1 (x). (1.1)
(Here and below, H,,_; stands for (n — 1)-dimensional Hausdorff measure).

Let us consider a nonnegative Lipschitz function u defined on €. If Q is Lipschitz, we can extend u to a
compact supported Lipschitz function on R". Then, if f € £!() and we put f = 0 outside €2, (1.1) becomes:

Jo £6) I Du(x) [ dx = [ dt fiico.upmy  T0X) dHa1(x). (1.2)
From (1.2) it follows in particular:

f{xGQ: u(x)>t} | DU(X) | dx = ft+OCHn*1{X € U(X) = g} d§ (1.3)



Note that:
{XGQ: u(x):{} 2 8{){69: u(x) >§}ﬁ Q, and: (1.4
Hn,l{x € Q:u(x) = 5} > PQ{X € Q:u(x) > 5}.

Here Pg, stands for the perimeter, in the sense of De Giorgi, relative to 2. For a definition of this concept in
the general case, see [9]. However, we will only use the fact that Po(E) < H,_1(0E) N Q for every

measurable subset E of 0f2, and, if OE is sufficiently smooth, this is an equality. (See [4]). The perimeter of E,
P(E), is equal to Po(E) when 2 = R". We recall De Giorgi's isoperimetric inequality in R":

P(E) > nc)/" |E|-Un,
The next theorem points out the role of isoperimetric inequalities in Polya-Szegd-type estimates.

Theorem 1.1. Let 2 be a bounded Lipschitz domain in ", n > 2, u € Lip(2), u > 0 in 2, and assume that
u satisfies:

PQ{X € Qux) > t} > yp(t)t-in (1.5)

for some positive constant 7y, any t > 0. (Here and below, x is the distribution function of u, defined in (0.1)).
Then @ € Lip({), and:

5 |DE|%dx < ( ) Jy | Du|?dx. (1.6)
Proof. (Here we revise an argument of [11]). Let us prove that @ is Lipschitz. If L is a constant such that
| Du(x) | <Lin{, and t, h such that 0 < h < t, then:
L{p(t—h) — p(t)] > f{er: heu(x)<t) | Du(x) | dx = (by (1.3), (1.4))

JoPo{x € u(x) > ehde > by (1.5) [ u(©) g >

> (by monotonicity of 1) ~-h-pu(t)!=1/",
Hence p is strictly decreasing in (0, || u || ), so that u” is continuous and satisfies:
u*(s) . u*(s +k) < % sfl+1/n k
forany k > 0,s,s+k € (0, | Q| ). Therefore u” € AC(e, | Q | ) for any € > 0 and:
0< —%(s) < Lyttt (1.7)

By the definition of i and (1.7) one can compute:

66—y | = | [o % (s)as| < L2 |y —x|

that is @ is Lipschitz in .
Let us prove now that (1.6) holds. From (1.3)-(1.4) it follows:
i Joeaup>y  |Dux) [ dx = PQ{X € Qu(x) > t} > (by (1.5)) yp(®)' V" (1.8)

From (1.2) it follows that:
(O = [xeupwsy | Du) [?dx = Jae Jixearu—gy | Pu | dHooa(x)
from which one reads that ¢ is absolutely continuous, so that:
fo IDuj2dx = ¢0) = [ —ps(t)dt (1.9)

Writing differential quotients and applying Holder's inequality one has:
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— (1) 2 7;/(1) [— & f{xesz: wwsy | Pu() | dx %, (1.10)
From (1.8), (1.9), (1.10) it follows:
Jo |Dul2dx > 2[5 MO gy (1.11)

—p/(t)

Now consider i. Since its level sets are balls, in (1.10) the equal sign holds, and (1.8) becomes:

~ 1/n —1/n
~ 6 Juctawsg DU dx = nel" u()Y
Hence:
2 —2/n
J5 |Du|2dx = (nc}/") S M . (1.12)
From (1.11)-(1.12) it follows estimate (1.6). O

Now we are interested in discussing sufficient conditions in order that (1.5) holds. In the following the
function u is still supposed nonnegative and Lipschitz in €.

(i) Ifu=0on 0, we obtain Polya-Szegd's theorem, since:
PQ{X € Q:u(x) > t} = P{x: u(x) > t} > ney/ " ()Y,
1/

by the isoperimetric inequality in ®”. So v = nc,/", and (1.6) holds with constant equal to 1.

(ii) Suppose that: | support of u| < % The relative isoperimetric inequality of €2 says that:
1-/n
QPo(E) > min( |E|, [E]) (113)

for some constant Q > 0, any measurable set E C 2. (Such an inequality certainly holds if 2 is Lipschitz).
Then:

PQ{X €Qiulx) > t} > Q lu(t)i-1/n, (1.14)

and (1.5) holds with y = Q1.

(iiiy More generally, suppose that:
|{x€Q:u(x):0}| =€

with 0 < e < 2L Fixt > 0.1f u(t) < &', (1.14) still holds. Otherwise, from (1.13) we get:

1-1/n

Q'PQ{X € Q:u(x) > t} > ( Q| — M(t)) > [au(t)]l—l/n

with a = ‘Q‘E,€~ Hence (1.5) holds with:

1-1/n
N = Qlal"ln = Qﬂ,(‘me%)

and (1.6) holds with constant:

2
Qney”
( ol 1/n .

Hn,l{x € 00 u(x) = 0} =e>0.

(iv) Now, suppose that:

We also suppose that €2 satisfies the following geometric property (this already appears in [10]):

H,H(aE N aQ) < CPy(E) (1.15)
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for some positive constant C, for any measurable E C Q such that |E| < % (If Q is Lipschitz, (1.15)

actually holds).
Fix t > 0. Again, we consider the case pu(t) > lar then, by (1.15):

55
H,_: (8{)( € Qu(x) < t} N 89) < C‘PQ{X e Qukx) < t}.

Hence:
PQ{X € Q:u(x) > t} = PQ{X € Q:u(x) < t} >
anl(a{x € Qu(x) < t} n 89) > éHn,l{x € 09 u(x) = o} -

(M) lfl/n
Q .

1
Z ¢

€
=£>

aQlm

So (1.5) holds with:
v = min(Q !, gt )

and (1.6) holds with constant:

2
1/n Cncl/"|Q- 1/
max{ (ann/ ), (% .

H,-1 (69) . . . .
which is a more expressive ratio.

5

nC}/"‘Q‘l—l/n

Note that: . <
(v)  Suppose that E = {x € Qu(x) = 0} is such that its projection on at least one hyperplane has positive

(n — 1)-dimensional Hausdorff measure, in symbols:
H, 1 (H(E)) = € > 0 for some projection II.

For any t > 0, the set A = {u < t} contains E, so:
P(A) = H,_1(9A) > H,_, (H(A)) > H,_, (H(E))

= €.

Now, if pu(t) > |52—2|, one has:
CPo{u>t} > H, i (a{u < t} N aQ).

€ H([)l—l/n

CH1 Qe

Hence:
Po{u>t} > 5 Plu<tt > o5 >

So (1.5) holds with:
")/ = min(Qil’ m).

Now we state separately the results obtained from (iii)-(iv)-(v).
Theorem 1.2. Let 2 be a bounded Lipschitz domain in ", n > 2; letu € H1=2(Q), u > 0in €, and suppose
that | supportofu| = | Q| — e forsome ¢ > 0. Then @ € Hy*({) and:

Jo |Du|?dx < L*f, |Du]|?dx

(1.16)

. 1/n . . . .
with L = (%f‘,—cl’}n), where Qisasin (1.13) and: o = ‘Q‘iﬁ if €< @; o = 1 otherwise.




Theorem 1.3. Let (2 be as above, let u > 0, u € H, where H is the closure in H"2-norm of the space:
H = {ap € Lip(Q): suppp N F = (Z)}

and F is a fixed closed subset of Q with H,,_;(F) = e > 0. Then @i € Hj*(}) and (1.16) holds with:

n /n —1/n
L_max{ (an}/”), (M)} (1.17)

and C as in (1.15).

Theorem 1.4. Let 2 be as above, let u > 0, u € H, where 7 is the closure in H"2-norm of the space:
H = {(p € Lip(Q): suppy C Q\ F}

where F is a closed subset of €2 with the property stated in (v). Then @ € H(I)Z(Q) and (1.16) holds with:

L= max{ (anl/") ( M)}

Remark 1.5. We note that the spaces H defined in thms. 1.3-1.4 are properly contained in H?(2) whenever
F has positive capacity. This is the case, in particular, if F has positive (n — 1)-measure. Moreover, if F has
(positive and) finite (n — 1)-measure and is a regular set in the sense of geometric measure theory (that is a.
e. (H,—1) point of F is a density point in sense H,,_1) then property (v) is certainly satisfied. (See [5], p.87).

Proof of theorem 1.2. If u € H'*(2), u > 0 and € is Lipschitz, u may be approximated in H"*-norm with
smooth functions u,, in §2. (See [1], thm. 3.18). Moreover, if the support of u has measure | 2| — ¢, then for
any €1 € (0,€) {u,, } can be choosen such that:

| {x € Quy(x) = O} | > €.

Hence, for every m, u,, satisfies (1.16) (with e replaced by ¢;), so that {ﬁm} is a bounded sequence in

H(I)Z(Q) Let @i, be a subsequence converging to some v € H[I)Z(Q) weakly in H' and strongly in £2. By [3],
U, — u in £3(Q) implies T,, — @ in £3(), so v=1 and @ € Hy*(Q). Then from weak convergence it
follows that u satisfies (1.16) for any €; < ¢, and hence for ¢, too. O

Proof of theorem 1.3. If u,, € H/, u,, — u in H%3(), then u,, satisfies (1.16)-(1.17). Hence arguing as
above, it follows that these hold for u. Note that the condition suppu,, N F = implies that | supp
w, | <IQ|;hence i, € H(l)’2(§~2), and so does u. O

In a similar way it follows theorem 1.4. Incidentally, we note that a Sobolev embedding theorem for
functions vanishing on part of the boundary can be derived from thm. 1.3:

Corollary 1.6. Let u € H, where H is as in theorem 1.3 or 1.4. Then the following estimate holds:

||ul () < const. | Du || 20 (1.18)

Proof. It is sufficient to prove (1.18) for u > 0. Then @ € Hé’z(ﬁ), so by Sobolev's embedding theorem and
theorem 1.3 (or 1.4) one has:

full g2y = 10 2@ < C DU 2@ < C || Du | g2 a

2. Local integrability of | Dii | 2 for u € H2(Q)

Theorem 1.2 allows us to prove the following result, which holds for any function u € H'?(2) (even
assuming negative values):

Theorem 2.1. Let Q2 be as in theorem 1.2, u € H?(Q2). Then & € H,;>({) and, for any ¢ > 0, one has:



2
Jo 1Du1%ax < cle(Qnel/”) fy [ Dul ?ax

where €0, is the sphere centred at the origin with measure | Q| — ¢ and:

2-2/n
c(e) = (‘Q‘%E) if e < @, c(€) = 1 otherwise.

Moreover, u” € AC(e, | Q| —e).

Proof. Puth = u*(ISZ_ZI), and let uy, uy be the positive and negative parts of (u — h). Then u; € H'?(2), | supp

u | < % (2 = 1,2). So by theorem 1.2 #i; € HéZ(Q) and:
2
Jo IDE[%dx < (an}/") Jo | Du; | ?dx.

In particular, u; € AC(e, | Q | ) for any € > 0. Now, noting that:
(V) (s) = (vV)* (s) 2.1)
(V) (s) = (V) (2] —s) (2.2)

one has:
(U —h)T € AC(¢, | ), (u"—h)~ € AC(0, | Q| — €), so that:
u" € AC(e, | Q| —¢) foranye > 0. (2.3)
Note also that:

(W—h) " = (u—h)* 2.4)

whereas the same is not true for the negative part. To handle the gradient of (u — hj ~, let us observe that, for
any € > 0, one has, by (0.4):

T 2 —€ ®
Jo, ID@=h) |2dx = (neil™)" fI5 s [ Du'(s) | 2ds 2.5)
while, by (0.4) and (2.2):
— 2 1/n 2 L9 2-2/ * 9
Jo. ID@=h)=| 2ax = (ne/")" [ 2 D] Q] ) | 2ds = 2.6)

Un\2 l0l—c 2-2/n N
= (ne") S (121 =) Du(s) [ 2ds,

2

Comparing (2.5) and (2.6) we can write:
~ e 2-2/n B
Jo, ID@—-h) |%dx < (&) Jo, ID(u—h)~] 2dx. .7)
Finally, we can estimate:

Jo. IDu(x)[2dx = [ |D(@—h) [2dx + J5 [D(u—h) |*dx < (by(2.4).(2.7)

0]—c 2-2/n 9
< fy |Dm |%dx + (—) 5 |DWy|2dx < (by 2.1))

< (anl/")z- max(l (u)zﬂn).{f |Duy [2dx + [, |Du |2dx} =
= n > € O 1 O 2

2 2-2/n
- (an,l/") . max(l, (‘Q‘;‘) )fsz | Du | 2dx.



So the theorem is completely proved. O
From the previous theorem it follows the next estimate, giving an approximation result for rearrangements:
Corollary 2.2. Let © be as above, u, v € H'?(Q). Then for any € > 0 one has:

sup | =Vv)(s)| <camnQ Q) [[u=v]2+
se€(e|Q] —e)

12 1/2
+ ea(enQ [ 2]) Ju=v | 3*{IDul> + D]}

In particular, if u,, is a sequence of H'? functions converging to u in H?(Q), then u,, converges to u"
uniformly in (e, | Q| — ¢€) for any € > 0.
Proof. We start by noting that if ¢ is an absolutely continuous function on [a,b], then:

b b
< 55 Lelo)do + 7 ¢i(o) | do

for every s € [a,b]. Applying this formula to the function:
2
p(s) = (u* (s) — u*(s)> on the interval (e, | Q| —¢€)

m

we have, by Holder's inequality:

(o) —u(o) [Pdo +

(0,6 ') < s

2SI o (o)~ (o) [ o) ([Tt (o) - G 0) | o) =

= Am + 2B7n'Cm~ (28)
Now:
An < iz lun —ull3 and: (2.9)
B, < e " |y, —u| o, while: (2.10)
1 1
Q n o 2 Qf—e —1/n u* 2
< (B ) [1Pde) + (B o) [ Pdo) =
3 3
= (Jo, DT |%ax)" + (f5, [DE|?dx)" < Gythm.2.1)
e(0.Q. 12 ){ I Duy [l2 + | Dull2. 2.11)
Collecting (2.8), (2.9), (2.10), (2.11) one gets the result. O

3. Extension to Orlicz-Sobolev spaces

Let A: [0, + 00)—=[0, 4+ co) be an "N-function" (see [7]), that is A is an increasing continuous convex
function, such that:

lim AU =0, 1m AU = 4o

t—0 ! t— + o0
By Jensen's inequality, we can repeat the proof of theorem 1.1 and obtain, under the same assumptions:

Y-/

Jo ACIDU() [)dx > [y A (050 ) (= (o) de (3.1)

00 /n ()1
Ja ACIDER) |)dx = [ A (220 (- () du (32)

We can rewrite (3.1)-(3.2) replacing A(r) with A( 1) for any fixed A > 0.
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. 1/n
Then, choosing Ay = % we get:

Jo A(K)dx < [, A(|Du])dx (3.3)

Now, recall that the natural norm in the Orlicz space:

La(Q) = {u:Q — 0, u measurable such that [, A(%) dx < 4+ 0o for some A > O}

is: [[ulla = in {/\>0fQ dx<1}

Rewriting again (3.3) with A(r) replaced by A( 5 ), and choosing A = || Du || o we get:

Dii(x)]
Ja A /\lnHDuH )dx < 1. Hence:
IDE | gy < (297) 1Dl 2o (3.4)

So we have proved the following:

Theorem 3.1. Let € and A be as above, let u be a nonnegative Lipschitz function in €2, such that one of the
following holds:

() u=0inECQ with |[E|] =¢>0
(i) u=0inF C 09Q withH,_1(F) =€ > 0
@(@ii) u=0inG C Q with H,,_; (H(G)) = € > 0 for some projection II (see section 1).

Then i@ € Lip(£2) and (3.4) holds, with y possibly depending onn, C, Q, | Q| , €

Remark 3.2. We did not state the previous theorem for u € H' £ (€2) because to apply a limit process as in
the proof of theorems (1.2)-(1.3)-(1.4) we have to know that a bounded sequence in H' L4 (£2) has a weakly
converging subsequence. This cannot be assured without further assumptions on A. To discuss this fact, we
recall some results from the theory of Orlicz-Sobolev spaces. (See [1]).

We say that A satisfies a "global As-condition" if:
A(2t) < §A(t) forsomed > 0,anyt > 0. (3.5)

We say that A satisfies a "Ag-condition near infinity" if (3.5) holds only for any t > t, , for some t; > 0.
We say that (A,Q) is A-regular if: A satisfies a global Ay-condition, or: A satisfies a As-condition near
infinity and | Q| < + oco. If (A,Q2) is A-regular, then £4(Q) and H'LA(Q) are reflexive spaces; if  is
Lipschitz then C*(9) is dense in H'LA(Q); if | Q| < + oo then L£4(Q) is continuously embedded in
Lt (). Using these facts one can repeat the proofs of theorems (1.2)-(1.3)-(1.4) to get the following:

Theorem 3.3. Let 2, A be as above. Suppose that A satisfies a Ag-condition near infinity, and let u satisfy
the assumptions of one of theorems 1.2, 1.3, 1.4, with H*(Q) replaced by H'.LA (). Then @ € H} £LA(9)
and (3.4) holds, with y possibly depending onn, C, Q, ||, €

Example. An example of Orlicz-Sobolev space which does not reduce to a standard Sobolev space and
satisfies the previous theorem is the one defined by A(r) = r* log (1 +r) withp > I.

Now we are interested in stating an analogue of theorem 2.1 for Orlicz-Sobolev spaces. We first consider
the case of a Lipschitz function u. The analogue of formula (0.4) is:

fQ (IDu(x) | )dx = f()lQl (nC}L/” | DU*(S) | Slil/n) ds

Arguing as in section 2 one gets:

Ja (|Du—h ) = Ja ( /™ | Du’(s) |s1’1/")ds (3.6)



Js, A(|D(u—h)*~|)dx - fé‘ﬁ‘z‘*A(nc},/’”|Du*(S)| (19 —s)l’l/“) ds. 3.7)

Comparing (3.6)-(3.7) one can write:

Ja, A(M) dx < [y A(|D(u—h):|)dx (3.8)

1-1/n
with A = (m'%e> (we take € < % ,S0 A > 1).

Applying (3.3) to the positive and negative parts of (u — h) we get, by (3.8):

A ax = i {A(RUE) 4 a(Re) bax <

S5

IN

Ja, {A(ID(ufh)tl) + A(|D(u7h)’~|>}dx <
< Jo {A(MID@=10)*1) + A(% D@-1h)|)}ax =
= /5 A</\0|Du|)dx with \g = Qnc/™.

Again, rewriting the previous inequality for A(7) instead of A(r) and choosing p = A || Du || o we find:

n e 1-1/n
1D | gy < (Que) (2=2) 7 | Du | £y (3.9)

Q
for every € € (O,%).

This holds for every Lipschitz function u defined in 2. From this fact we get, by approximation with
smooth functions:

Theorem 3.4. Let 2, A be as in theorem 3.3. If u € H'LA(2) then U € H}, .LA(©2) and (3.9) holds.
Moreover, u” € ACjc(e, | Q| — €) for every e > 0.
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