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Abstract.   We consider the Cauchy-Neumann problem for parabolic operators of the kind:

Lu  u  a t,x uœ � Ð Ð Ñ Ñt x x34 3 4

on a smooth cylinder  0,T . By symmetrization techniques we establish for theÒ Ó ‚ H
solution  u  of this problem an  estimate of the kind:_:

² Ð Ñ � Ð Ñ Ð ± ± Ñ ² Ÿ ² Ð Ñ ² Ÿ Ÿ _u t, u t  U t, 1  p  . .*

 

"
# : :H

where  U  is the solution of a symmetrized problem  and  u t   is the decreasing.Ð Ñ Ð Ñ*

rearrangement of  u t, . We also obtain an "energy inequality" comparing  norms of.Ð Ñ _#

the gradients of  u  and  U.

INTRODUCTION

In this paper we consider parabolic operators of the kind:

   Lu      a t,x   u Au  (0.1)´ � Ð Ñ ´ �` ` `
` ` `34
u

t x x t
4 3
Š ‹

with the matrix  a  uniformly elliptic, defined on a smooth cylinder 0,T . We consider theÐ Ñ Ð Ñ ‚34 H

Cauchy-Neumann problem for this operator, with homogeneous boundary data:

 Lu  f   in  0,T   (0.2) œ Ð Ñ ‚ H

   0   on  0,T`
`
u

/
œ Ð Ñ ‚ `H

 u 0,   u    in  ..Ð Ñ œ ! H

(Here  stands for the conormal derivative).`
`/

Our purpose is to compare the solution  u  of (0.2) with the solution  U  of a "symmetrized"

Cauchy-Dirichlet problem for the heat equation:

    U  F in 0,T  Š ‹`
`

w
t
� œ Ð Ñ ‚#? H

 U  0  on  0,T œ Ð Ñ ‚ `Hw

 U(0, )  U   in  .. œ !
wH

Here  F, U ,   are obtained from  f, u ,  by symmetrization, while    is a number related to! !
wH H #

the relative isoperimetric constant of . (See section 1 for precise definitions and statements).H
 The connection between Neumann and Dirichlet problems appears already in Maderna-

Salsa  where the elliptic case is treated. The two typical results that we obtain here are the%

following estimates:

 u t, u t   U t,  (0.3). .² Ð Ñ � Ð Ñ Ð Ñ ² Ÿ ² Ð Ñ ²*
2

± ±

Ð Ñ Ð Ñ
H

_ H _ H: : w

for a.e. t 0,T , any p 1, , where  u t   is the decreasing rearrangement of  u t, ;. .− Ð Ñ − Ò _Ó Ð Ñ Ð Ñ Ð Ñ*

 "energy estimate": (0.4)

 Du  dx dt   u (T) dx     DU dx dt ' ' '
H H H‚Ð Ñ ‚Ð Ñ

# # #
0,T 0,T

1

2
± ± � Ÿ ± ± �# w



2

   U (T) dx   h t  f t,x dx dt   with h t  u t .� � Ð Ñ Ð Ñ Ð Ñ œ Ð Ñ Ð Ñ1

2 20

T *' ' '
H H

H
w

# ± ±

 As usual for this kind of result the main strategy is to get a differential inequality for the

distribution function of the solution. In our case the key point used to carry out this procedure is a

measure theory lemma (lemma 3.2) which could also be interesting in itself.

 I wish to thank prof. G. Talenti and prof. S. Salsa for their kind attention and useful

suggestions.

1. ASSUMPTIONS AND MAIN  RESULTS

Let us consider a linear parabolic operator of the form (0.1), defined on  D  0,T , with œ Ð Ñ ‚ H H
a bounded domain in , where the matrix a t,x  is symmetric and uniformly elliptic, withd Ð Ñ8

34

normalized lowest eigenvalue:

 a t,x     for all . (1.1)34 3 4
# 8Ð Ñ   ± ± − d0 0 0 0

We consider the Cauchy-Neumann problem (0.2), and we make the following assumptions about

coefficients and data:

 a D ;  f D ;  u . (1.2)34 !
_ # #− Ð Ñ − Ð Ñ − Ð Ñ_ _ _ H

 Under these assumptions problem (0.2) is uniquely solvable in some weak sense. More

precisely, let:

     w 0,T;H  : 0,T;H  . (1.3)F _ H _ Hœ − Ð Ð ÑÑ − Ð Ð Ñ Ñš ›# " # "`
`
w 

t 
*

(Here  H  denotes the dual space of  H ). Then for solution of problem (0.2) we mean a" "Ð Ñ Ð ÑH H*

function u  such that:− F

 u 0,   u    as an element of H  and:.Ð Ñ œ Ð Ð Ñ Ñ!
" H *

 u ,   a u dx  f dx   for all H , a.e. t 0,TØ Ù � œ − Ð Ñ − Ð Ñt x x9 9 9 9 H' '
H H34

"
3 4

Ð Ø Ù Ð ÑÑwhere  ,  denotes duality on H . In this sense problem (0.2) is well posed. (See for instance" H
Treves , chap. IV).(

 Moreover, if we strengthen our assumptions asking that:

 f D ;   0,T; ;   u H   (1.4)− Ð Ñ − Ð Ð ÑÑ − Ð Ñ_ _ _ H H# " _ "`

` !
a

t

34

then the solution  u  belongs to  H D ."Ð Ñ
 For reader's convenience we recall a few definitions and results about rearrangements of

functions.

 For any measurable function  v  defined on , we define the ofH decreasing rearrangement 

v  as:

 v s  inf  : x : v(x) s   for  s 0, .* *Ð Ñ œ − d ± Ö − � × ± Ÿ − ´ Ò ± ± Óš ›) H ) H H

(  denotes Lebesgue measure). The  of v  is:.± ± spherical rearrangement

 v x  v c x    for  x~ ~
Ð Ñ œ Ð ± ± Ñ −*

8
8 H

where  c  is the measure of the unit ball in , and  is the sphere centred at the origin with
~

8
8d H

measure . If  v  is defined on 0,T , we write v(t)  for the decreasing rearangement of± ± Ð Ñ ‚H H *

the function v t,  for t fixed. We put also:.Ð Ñ

 v t,x  v t c x .~Ð Ñ œ Ð Ñ Ð ± ± Ñ*
8

8

Some basic facts we need about rearrangements are the following.

( ) The map  v  v    is non-expansive in , that is:i Ä * _:

 u  v    u v (1.5)² � ² Ÿ ² � ²* *
_ H _ H: :Ð Ñ Ð Ñ*
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for any u, v , p 1, . (See Chiti  for the proof).− Ð Ñ − Ò _Ó_ H: #

( ) If  u H 0,T,   then  u  H 0,T,   and:ii − Ð Ð ÑÑ − Ð Ð ÑÑ" # " #_ H _ H*

          dx        u  t,s ds   for a.e. . (1.6)' '
Ö � ×

` `
` `

Ð Ñ

u 0

u

t t
*

)

. )
œ Ð Ñ )

(This is a basic result contained in Mossino-Rakotoson ).&

Here we indicate with u  the set, depending on t: x : u t,x ,  and with    theÖ � × Ö − Ð Ñ � ×) H ) .
distribution function of u:

 u .. ) )Ð Ñ œ ± Ö � × ±

(Note that  is a function of t and ).. )
 Let us turn now to problem (0.2). If u is the solution, we define the function:

 h t u t  .Ð Ñ œ Ð Ñ Ð Ñ*
2

± ±H

We shall indicate with u , u , respectively, the positive and negative parts of u h , and with" # Ð � Ñ
. ." # " # " #, , respectively, the distribution functions of u , u . Note that u , u  are nonnegative

functions whose supports in , for every fixed t, have measure less than or equal to /2.H H± ±
 Let f, u   be the data in problem (0.2), f , f  the positive and negative parts of f and u 0 ,! " # "Ð Ñ
u 0  the positive and negative parts of u  h 0 ; put:# !Ð Ñ Ò � Ð ÑÓ

 f t f t  f t  s$ " #Ð Ñ ´ Ò Ð Ñ � Ð Ñ ÓÐ Ñ* *

 v  s u 0  u 0  s .* * *
! " #Ð Ñ ´ Ò Ð Ñ � Ð Ñ ÓÐ Ñ

We define also the relative isoperimetric constant of  as the smaller number Q for which theH
following holds:

 min E , E   Q P E  (1.7).š ›Ð ± ± ± Ï ± Ñ Ÿ Ð ÑH
"�"Î8

H

for any measurable subset E of . Here P E  stands for the perimeter of E relative to , in theH HHÐ Ñ
sense of De Giorgi.

 Our main results are the following ones:

Theorem 1.1. Suppose that  is a bounded  domain in , and that (1.1), (1.2) hold. Let  uH V#ß 8! d
be the solution of problem (0.2), and  U  the solution of:

 U  f  in 0,T  (1.8). ~ ~Š ‹`
` $ "Î#t
� œ Ð Ñ ‚# ? H

 U  0 on 0,T
~

œ Ð Ñ ‚ `H"Î#

 U 0,   v   in . ~ ~
Ð Ñ œ ! "Î#H

where Q n c  and    is the sphere centred at the origin with measure /2. Then:. . ~
# H Hœ Ò Ó ± ±8

"Î8 #
"Î#

-

 u h t   U t     (1.9.a)² Ð � ÑÐ Ñ ² Ÿ ² Ð Ñ ²_ H _ H: :
"Î#Ð Ñ Ð Ñ

~

for a.e. t 0,T , any p 1, . Moreover:− Ð Ñ − Ò _Ó

 sup u t,   inf  u t,   U t .  (1.9.b). .

H H
Ð Ñ � Ð Ñ Ÿ ² Ð Ñ ² _ H_

"Î#Ð Ñ
~

Theorem 1.2. ("Energy estimate"). Suppose all the assumptions of theorem 1.1 hold. Moreover,

suppose (1.4) holds, and take h 0 0. Then:Ð Ñ œ

  Du dx dt    u T dx ' '
D

1

2
± ± � Ð Ñ Ÿ# #

H

    DU dx dt       U T dx  h t   f t,x dx dt. (1.10)Ÿ ± ± � Ð Ñ � Ð Ñ Ð Ñ#' ' ' '
D 0
~

1

2
~

T# #
H H"Î#
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Here D 0,T ).
~ ~
œ Ð Ñ ‚ H"Î#

 One can obtain from the proof of (1.9) also a rough estimate on norms of  u t,  in._: Ð Ñ
terms of the data. Namely, the following holds:

Proposition 1.3. If f 0,T;   and  u  1 p  then for a.e. t 0,T  one− Ð Ð ÑÑ − Ð Ñ Ð Ÿ Ÿ _Ñ − Ð Ñ_ _ H _ H" : :
!

has:

(1.11)u t,   2 2 f d   2 u  2 u h 0 .. . .² Ð Ñ ² Ÿ Ð � Ñ ² Ð Ñ ² � ² ² � ² � Ð Ñ ²: : ! : ! :
"�"Î: "�"Î:'

0

T
7 7

 Note that at the right hand side of (1.11) the relative isoperimetric constant does not

appear at all. In the elliptic case such an inequality would be false, as shown in Maderna-Salsa .%

 The proof of theorems 1.1-1.3 will proceed in two main steps. First we shall derive

estimates (1.9), (1.10), (1.11) under stronger assumptions (section 2). Then (section 3) we will

reduce the general case to the previous one. The additional assumptions are the following:

 (1.12.a) we suppose that the coefficients  a  and the data u , f are smooth; as a34 !

consequence (see Ladyzenskaya-Solonnikov-Uraltseva , chap.IV, thm. 5.3) we have that:  u,  u ,$
x3

u ,  u   belong to D ;x tx3 4
V!Ð Ñ

 (1.12.b) we suppose that the solution  u  has the following property: for a.e. t, the

distribution function  of u is strictly decreasing; this means that for a.e. t the function u t,  is.. Ð Ñ
not constant on any subset of  of positive measure.H
 From (1.12.a) we have the following:

Lemma 1.4. The function  h  is Lipschitz on 0,T . (In particular, the functions u , u  belong toÒ Ó " #

H D )."Ð Ñ

Proof.    h t h t   u t  u t   ± Ð � Ñ � Ð Ñ ± œ ± Ð � Ñ Ð Ñ � Ð Ñ Ð Ñ ± Ÿ7 7 * *
2 2

± ± ± ±H H

  u t  u t    (by (1.5))Ÿ ² Ð � Ñ � Ð Ñ ² Ÿ7 * *
 _ H_Ð Ñ*

  u t u t   sup t,x ..

D

Ÿ ² Ð � Ñ � Ð Ñ ² Ÿ ± ± ± Ð Ñ ±7 7_ H_Ð Ñ
`
`
u

t
�

2. PROOF OF THEOREMS 1.1-1.3 IN A SPECIAL CASE

We are now in position to begin the proof of theorem 1.1. We shall keep the notations and

assumptions of the previous section. Fix a number  0, and  t 0,T . Let us consider the)   − Ð Ñ
functions  u  ( 1, 2). The Fleming-Rishel formula gives see Maderna-Salsa :3

%3 œ Ð Ñ

          Du dx  P u . (2.1)� ± ± œ Ö � ×`
` Ö � × 3 3) ) H
'

u3
)

By our definition of u   and the relative isoperimetric inequality we have:3

   Q P u . (2.2).. ) )3 3
"�"Î8Ð Ñ Ÿ Ö � ×H

On the other hand, using Cauchy-Schwartz inequality and ellipticity we get:

 (2.3)          Du dx            a u u dx .. .� ± ± Ÿ Ò � Ó � Ð Ñ Ð Ñ` `
` ` `Ö � × Ö � ×3 45 3 3

`
) ) )) )

.' 'Š ‹
u u x x
3 3

3 "
#

4 5

"
#

From (2.1), (2.2), (2.3) it follows:

 1  Q           a u u dx . (2.4). . .Ÿ Ð Ñ Ò � Ó � Ð Ñ Ð Ñ# �#�#Î8
3 45 3 3

`
` `

`
Ö � ×. )

.

) ) )
3

3 4 5
Š ‹'

u x x

Since  u  is the solution of problem (0.2), we have that:
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   a u dx    f dx  for a.e. t, every H . (2.5).' '
H H45

`
`

"
x x

u

t4 5
9 9 9 Hœ Ð � Ñ − Ð Ñ

Choosing as test functions in (2.5)  max 0,u t,   1,2  we obtain:.9 )3 3œ Ð Ð Ñ � Ñ Ð3 œ Ñ

           a u u dx            u f dx. (2.6). .' '
Ö � × Ö � ×45 3 3 3

3 `
`u ux x
u

t3 34 5) )
Ð Ñ Ð Ñ œ Ð � Ñ Ð � ÑÐ � Ñ)

Taking derivative in both sides of (2.6) we have, from (2.4):

 1  Q           f dx. (2.7). . .Ÿ Ð Ñ Ò � Ó Ð � Ñ Ð � Ñ# �#�#Î8 3
3

`
` `Ö � ×

`. )
.

) )
3

3
'

u

u

t

Now, put:

 F t,s   f t  d   1,2.3 3Ð Ñ œ Ð Ñ Ð Ñ 3 œ'
0

s * 5 5

Then Hardy-Littlewood inequality (see Maderna-Salsa ) implies:%

           f dx            f dx  F t, . (2.8)Ð � Ñ Ð � Ñ Ÿ Ÿ Ð Ð ÑÑ3
Ö � × Ö � × 3 3 3' '
u u3 3) )

. )

 Now we handle the term            dx  in (2.7).Ð � Ñ3 Ö � ×
`
`

'
u

u

t3 )

Note that, by the continuity of  u ,  one has:3

           dx            dx  h t . (2.9).Ð � Ñ œ � � Ð � Ñ Ð Ñ Ð Ñ3 3 w
Ö � × Ö � ×

`
` `

`
3' '

u u

u

t t

u

3 3

3

) )
. )

 Set:  k t,s u t  d .              3 3Ð Ñ œ Ð Ñ Ð Ñ'
0

s * 5 5

Then applying (1.6) to u  we have, by (2.9):3

           dx  t,   h t . (2.10).Ð � Ñ œ � Ð Ð ÑÑ � Ð � Ñ Ð Ñ Ð Ñ3 3 w
Ö � ×

`
` `

`
3 3'

u

u

t t

k

3

3

)
. ) . )

From (2.7), (2.8), (2.10) it follows:

 1  Q F t,  t,  . .Ÿ Ð Ñ Ò � Ó Ð Ð ÑÑ � Ð Ð ÑÑ �# �#�#Î8
3 3 3 3

`
` `

`. ) . ) . )
.

)
3 3� k

t

  h t . (2.11).� Ð � Ñ Ð Ñ Ð Ñ3 w
3. ) Ÿ

(2.11) holds for a.e. t 0,T , every 0, 1,2.− Ð Ñ   3 œ)
 Since u  satisfies (1.12.b),   and  u t    are inverse functions. Put  s . Then3 3 3 3. . )Ð Ñ œ Ð Ñ*

(2.11) rewrites as:

 t,s   u t  s   (2.12)� Ð Ñ œ � Ð Ñ Ð Ñ Ÿ`
` `

`
3

#
3
#
k

s s
*

  Q s  F t,s  t,s   s h t .. . . .Ÿ Ð Ñ � Ð Ñ � Ð � Ñ Ð Ñ# �# 3 w�#Î8
3

`
`� Ÿk

t
3

(2.12) are true for a.e. t 0,T  and for all  s  with 0, i.e., since (1.12.b) holds, for all− Ð Ñ œ Ð Ñ  . ) )3

s 0, .− Ð ± ± Ñ"
# H

 Moreover, k  satisfies the following conditions:3

 k t,0   03Ð Ñ œ
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 t,   0
`
` #

"k

s
3 Ð ± ± Ñ œH

 k 0,s   u 0  d3 3Ð Ñ œ Ð Ñ Ð Ñ'
0

s * 5 5

 Now, put  k k k   and  F F F . Adding the two inequalities (2.12) we obtain:$ " # $ " #œ � œ �

 t,s   Q s t,s   F t,s  (2.13.a). .` `
` `

�# #�#Î8
$

k k

t s
$ $

#

#Ð Ñ � Ð Ñ Ÿ Ð Ñ

with: 

 k t,0   0  (2.13.b)$Ð Ñ œ

 t,   0
`
` #

"k

s
$ Ð ± ± Ñ œH

 k 0,s   v d . for all s 0, , a.e. t 0,T .$ !
"
#Ð Ñ œ Ð Ñ − Ð ± ± Ñ − Ð Ñ'

0

s * 5 5 H

 Now one can see that system (2.13) is the same that is found in Mossino-Rakotoson&

studying Dirichlet's problem for parabolic equations. So we can draw the same conclusions:

Ð Ñi .  For system (2.13) a maximum principle holds, that is:

 k t,s   K t,s   for t,s 0,T 0,  (2.14)$
"
#Ð Ñ Ÿ Ð Ñ Ð Ñ − Ð Ñ ‚ Ð ± ± ÑH

where  K  satisfies (2.13) with the equality sign in (2.13.a). Moreover:

Ð Ñ Ð Ñ œ Ð Ñii .  K t,s  U  t, d   where  U  is the solution of (1.8).'
0

s * 5 5

 A lemma of Bandle (see Bandle , p.174) states that:"

if  f, g  are two nonnegative measurable functions such that

  f  d   g  d    for all  s 0, then:' '
0 0

s s* *Ð Ñ Ÿ Ð Ñ  5 5 5 5

 f   g for all  p 1, .² ² Ÿ ² ² − Ò _Ó: :  

We also note that for any function  v   we have:− Ð Ñ_ H:

(2.15)2 v  v    v   v  v  ..�"�"Î: � � � �
Ð Ñ Ð ÑÐ Ñ² Ð Ñ � Ð Ñ ² Ÿ ² ² Ÿ ² Ð Ñ � Ð Ñ ²* * * *

  _ H _ H_ H: ::* *

Collecting  and these remarks we have:Ð Ñi , iiÑ Ð

 u h t   u t  u t    U t  (2.16)² Ð � ÑÐ Ñ ² Ÿ ² Ð Ñ � Ð Ñ ² Ÿ ² Ð Ñ ²_ H _ H _ H: : :
"Î#Ð Ñ " # Ð Ñ Ð Ñ

* *
 

~
*

for a.e. t 0,T ,  for any  p 1, .  This is (1.9.a). Note also that:− Ð Ñ − Ò _Ó

 u t  u t    sup u h t   inf  u h t  ² Ð Ñ � Ð Ñ ² œ Ð � ÑÐ Ñ � Ð � ÑÐ Ñ œ" # _
* *

H H

  sup u t,   inf  u t, .. .œ Ð Ñ � Ð Ñ
H H

Hence (1.9.b) follows. �

Remark 2.1. If one knows that h t  is constant, then inequalities (2.12) can be discussedÐ Ñ
separately (without adding them): if we call U  (i 1, 2) the solutions of a problem (1.8) with3 œ

data f  and u 0  , then one has:
~ ~
3 3Ð Ñ

 u t    U t .² Ð Ñ ² Ÿ ² Ð Ñ ²3 3Ð Ñ Ð Ñ
* ~_ H _ H: :

"Î#

Hence:

 u h t   U t   U t   for  p 1,² Ð � ÑÐ Ñ ² Ÿ Ð ² Ð Ñ ² � ² Ð Ñ ² Ñ − Ò _Ñ: " #
: :
: :

"Î:

and:
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 u h t   max U t  , U t .² Ð � ÑÐ Ñ ² Ÿ Ð ² Ð Ñ ² ² Ð Ñ ² Ñ_ " _ # _

 For instance, if  f f   and  u 0) =u 0  , then U U , U 2U , so that (if* * * *
" # " # " # "œ Ð Ð Ñ œ œ

h constant, say h 0):œ ´

 u t   2 U t    for p 1, .² Ð Ñ ² Ÿ ² Ð Ñ ² − Ò _Ó: :
�"�"Î:

This improves the estimate of theorem 1.1 for p 1.�

 Proof of proposition 1.3.

From (2.13.a), since      0, we have:` `
` `

#

#
K U

s s
œ Ÿ

*

 F   0  for all s 0, , a.e. t 0,T .$
` "
` #�   − Ð ± ± Ñ − Ð ÑK

t
H

Integrating in  t  this inequality we have:

 U  t, d   g t, d' '
0 0

s s* Ð Ñ Ÿ Ð Ñ5 5 5 5

with: g t,s   v s   f  s d .Ð Ñ œ Ð Ñ � Ð Ñ Ð Ñ* *
0

t

! $' 7 7

So, by Bandle's lemma and (2.15), we have:

 U t   g t  ² Ð Ñ ² Ÿ ² Ð Ñ ² Ÿ_ H _ H:
"Î#

:Ð Ñ Ð Ñ~
 *

  2 u h 0   f d . (2.17)Ÿ ² � Ð Ñ ² � ² Ð Ñ ²"�"Î:
! Ð Ñ Ð Ñ� Ÿ'

_ H _ H: :
0

t
7 7

Now we want to estimate  h t   in terms of the data. Observe that:± Ð Ñ ±

 h t    u t  d    if  h t 0.± Ð Ñ ± Ÿ Ð Ñ Ð Ñ Ð Ñ  
± ± ± ±H H

2 0
*' "

# 5 5

 h t    u t  d    if  h t 0. (2.18).± Ð Ñ ± Ÿ � Ð Ñ Ð Ñ Ð Ñ Ÿ
± ±

± ±

± ±H

H

H

2
*'

"
#

5 5

Let us turn back to (2.12). It gives in particular:

 0  F t,s  t,s   s h t   for  1,2.. .Ÿ Ð Ñ � Ð Ñ � Ð � Ñ Ð Ñ 3 œ3
`
`

3 wk

t
3

Integrating in  t  this inequality one can obtain the following:

(2.19.a)u t d   u  d   d f  d' ' ' '
0 0 0 0

* * *t" " "
# # #± ± ± ± ± ±

! "
H H H

Ð Ñ Ð Ñ Ÿ Ð Ñ � Ð Ñ Ð Ñ5 5 5 5 7 7 5 5

(2.19.b)u t  d   u d   d f  d .� Ð Ñ Ð Ñ Ÿ � Ð Ñ � Ð Ñ Ð Ñ' ' ' '
" "
# #

"
#

± ± ± ±

± ± ± ± ± ±
! #H H

H H H* * *
0 0

t
5 5 5 5 7 7 5 5

Ð Ò � Ð ÑÓ Ð Ñ œ � Ð Ñ Ð ± ± � ÑÑTo get (2.19.b), remember that u t  s u t  s .* * H
From (2.18)-(2.19) we get:

 h t   u   f d  (2.20).± Ð Ñ ± Ÿ ² ² � ² Ð Ñ ²
± ±

! Ð Ñ Ð Ñ
H

_ H _ H2 0

t
" "' 7 7

Finally, from (2.16), (2.17) and (2.20) it follows proposition 1.3. �

  (Energy estimate).Proof of theorem 1.2.

From (2.5), with test function u, one has:
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   f u dx    u dx    a u u dx  (by ellipticity)' ' '
H H H

� œ  `
` 34
u

t x x3 4

    Du dx.   Integrating in  t:  ± ±'
H

#

   Du dx dt    u T dx    u dx    f u dx dt.' ' ' '
D D

1 1

2 2
± ± � Ð Ñ Ÿ �# # #

!H H

Similarly one obtains:

   DU dx dt      U T dx       v dx    f U dx dt.. ~ ~
# ' ' ' '

D D
~ ~

1 1

2 2
~ ~± ± � Ð Ñ œ �# #

!
#

$H H"Î# "Î#

By (2.15), and since  h 0 0:Ð Ñ œ

   u dx       v dx.~' '
H H!

#
!
#Ÿ ~

"Î#

Hence:

   Du dx dt    u T dx    DU dx dt .' ' '
D D

1

2
~± ± � Ð Ñ Ÿ ± ± �# # #

H
#

      U T dx    f u dx dt    f U dx dt. (2.21)
~

� Ð Ñ � �1

2
~

D D
~' ' '

H"Î#

#
$

Now:

  u h f dx   u f u f dx  (by Hardy-Littlewood)' '
H H
Ð � Ñ Ÿ Ð � Ñ Ÿ" " # #

  u f u f s ds  (let us call u u u )Ÿ Ð � ÑÐ Ñ Ÿ œ �'
0

* * * * * * *± ±
" " # # $ " #

H

  u f ds  (by parts)  f k  k ds Ÿ œ œ Ò Ó � Ÿ' '
0 0 0

* * * f

s

± ± ± ±
$ $ $ $ $

± ± `
`

H HH *

$

(since  f t, 0, k t,0 0, and by (2.14))*
$ $Ð ± ± Ñ œ Ð Ñ œH

  K ds  (by parts...)  U f ds       U f dx.
~

Ÿ � œ œ œ' ' '
0 0

f

s
* *

~
± ± ± ±`

` $ $
H H

H

*

$

"Î#

So we have:

   f u dx dt    f U dx dt  h t   f t,x dx dt. (2.22)
~' ' ' '

D D 0
~

T
� Ÿ Ð Ñ Ð Ñ$ H

 From (2.21) and (2.22) it follows (1.10). So theorem 1.2 is proved.  �

Remark 2.2. In this proof we have used, beside the assumptions of theorem 1.2, only the fact that

f t    is absolutely continuous. This is true, for instance, when  f t, H . However, this. .
$

"Ð Ñ Ð Ñ Ð Ñ − Ð Ñ* H
last assumption is unessential: in the next section we will show that theorem 1.2 holds whenever

f  is an D  function._#Ð Ñ

3. PROOF OF THEOREMS 1.1-1.3 IN THE GENERAL CASE

The aim of this section is to relax the two extra-assumptions we have done till now in proving

theorems 1.1, 1.2, 1.3. Let us recall them here:

 (1.12.a) the coefficients a  and the data u , f are smooth;34 !

 (1.12.b) the solution  u  has the following property: for a.e. t, the function  u t,   is not.Ð Ñ
constant on any subset of  of positive measure.H
 While to bypass (1.12.a) standard approximation techniques are sufficient, (1.12.b)

requires a more delicate costruction. We start from this, showing how we can construct a problem



9

of type (0.2) whose data are as close as we want to the original ones, and whose solution satisfies

(1.12.b).

 Let us consider, for t 0.T  fixed, the solution  v t,  of the elliptic problem:.− Ò Ó Ð Ñ

 a t, v   g   in   (3.1).� Ð Ñ œŠ ‹34 x
x

3
4

H

   0   on , with the condition   v dx = 0`
`
v

/ H
œ `H '

where  g x  x   y dy.Ð Ñ œ ± ± � ± ±�# #'
H

 The datum g satisfies the compatibility condition  g 0, and the solution  v t,  is not.' œ Ð Ñ
constant on any set of positive measure, as we read from the equation, since  g  is not zero on any

set of positive measure. Moreover, since the coefficients a   are smooth in D, v  is smooth in D,34

too. Now, if we set:

 h t,x t v t,x.Ð Ñ œ Ð Ñ

then  h  is the solution of the problem:

 a h   v t t g  g     in 0,T  (3.2). .` `
` `34 "
h v

t tx
x

� œ � � ´ Ð Ñ ‚Š ‹3
4

H

   0   on 0,T`
`
h

/
œ Ð Ñ ‚ `H

 h 0,t   0   in Ð Ñ œ H

and for   t 0,T   h  is not constant on any set of positive measure. Note that the datum  g   inall − Ò Ó "

(3.2) is bounded by a constant which depends on a .  The next theorem clarifies the role² ` ²t 34 _

of  h.

Theorem 3.1. Let h t,x  be a function on D such that for any fixed t 0,T   h t,  is not constant.Ð Ñ − Ò Ó Ð Ñ
on any subset of  of positive measure, and let u t,x  be a measurable function. Then for anyH Ð Ñ
% % % %! !� − Ð Ñ œ � − Ð Ñ0  there exists 0,  such that the function u u h  for a.e. fixed  t 0,T  is not.

%

constant on any subset of  of positive measure.H

 The reason why this theorem is true is a matter of measure theory, namely the following

lemma:

Lemma 3.2. Let  be a positive number. Suppose we have a family I   of subsets of 0,T%! −Ð ÑÖ × Ò Ó% % %0, !

and, for each 0, , a family E  of subsets of . Then if every I  has positive measure% % H− Ð Ñ Ö ×! −% %,t t I%

in  and every E  has positive measure in , there exist two different numbers  , 0,d d − Ð Ñ%,t
8

" # !% % %
and a number t 0,T  such that E  and E  have intersection of positive measure.! − Ò Ó % %" ! # !,t ,t

 of theorem 3.1 from lemma 3.2.Proof 

By contradiction. Suppose there exists 0 such that for any 0,  there exists I 0,T ,% % %! !� − Ð Ñ § Ò Ó%

± ± � − Ð ÑI 0, such that for all t I  the function u t,  is constant on some set of positive measure,.
% % %

i.e. there exist  k   and  E , E 0, such that u t,x k   for all t I ,% % % % % %,t ,t ,t ,t− d § ± ± � Ð Ñ œ −H
x E . Then by lemma 3.2 there exist  , 0,   and t 0,T  such that− − Ð Ñ Ð Á Ñ − Ò Ó%,t % % % % %" # ! " # !

± � ± � − �E E 0. Hence for all x E E  we have:% % % %" ! # ! " ! # !,t ,t ,t ,t

 u h t ,x k   1,2 ..Ð � ÑÐ Ñ œ Ð3 œ Ñ%3 ! %3 !,t

By subtraction we get: h t ,x constant  for all x E E , which contradicts ourÐ Ñ œ − �! % %" ! # !,t ,t

assumption on  h. �

  of lemma 3.2.Proof

Put E 0,  and fix E .! ! !œ Ð Ñ −% %

Claim (a). We can choose an uncountable subset F of E  and, for any F, a measurable subset! % −
J  of I  such that:% %

 J   for all F and  E   for all F, t J ,± ± � − ± ± � − −% % %
1 1

n n,t
" !

% %
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for some integers n , n .! "

 In fact: for n , put:− a

 I t I : E .8
% % %œ − ± ± �š ›,t

1

n

The set I  may not be measurable. But we always can choose  a measurable set J I  such that8 8 8
% % %§

the of I J  is zero. Then we have:outer measure 8 8
% %Ï

 J   I   and  I  J 0.� § ± Ï � ± œ
_ _

8 œ " 8 œ "
8 8
% %% %

Now, since I 0, there must be an integer n  such that J 0.± ± � ± ± �% % %
n%

For any E  we choose such n , and we call J J . For any m , put:% a− œ −! % % %
n%

 E E : n m .7 !œ − œš ›% %

Since E E   and E  is uncountable, there exists n  such that E   is uncountable. Moreover,! 7 ! !œ � n!

since J 0 for all E , there exists n  such that J 1/n   for an uncountable± ± � − ± ± �% %% n! " "

infinity of J 's. Let us call J  this uncountable family. We have proved (a).% %
%

š ›
−F

 Now:

Claim b .Ð Ñ  For any fixed positive integer k, there exist k sets J ,...,J   F  such that:% %" 5
Ð − Ñ%3

   J .� Á g
5

3 œ "
%3

 By contradiction.

There exists k such that for any  J ,...,J   F  it is:% %" 5
Ð − Ñ%3

  J .� œ g
5

3 œ "
%3

Then for any finite family J ,...,J  F , since every t 0,T  does not belong to more than% %" < Ð − Ñ − Ò Ó%3
k 1 sets among these, one has:�

   J   k 1  J   k 1 T. .r

n" 3 3" ± ± Ÿ Ð � Ñ ± � ± Ÿ Ð � Ñ
<

3 œ "
!
3œ"

<

% %

and this is false for large r. Hence we have b .Ð Ñ
 Now, choose k n , J ,...,J  satisfying claim (b), and:.� ± ±! H % %" 5

 t J .! − �
5

3 œ "
%3

Consider  E ,...,E .% %" ! !5,t ,t § H
 We say that there are two of these sets with intersection of positive measure. If not, we

should have:

    E   E     ,± ±   ± � ± œ ± ± � � ± ±
5

3 œ "
H H% %3 ! 3 ! !

,t ,t
k

n
!
3œ"

5

contradiction. So the lemma is proved. �

 Now we show how using theorem 3.1 we can obtain theorems 1.1, 1.2, 1.3 in the general

case. Let us consider problem (0.2). First, we suppose that coefficients and data are smooth. So if

u  does not satisfy (1.12.b) we can make the construction previously seen in this section: if  h, g"
are the functions appearing in (3.2), by theorem 3.1 we can choose a sequence  0 such that%7 Ä
the function  u u h  is the solution of:.

7 7œ � %
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 A u f g F    in 0,T  (3.3).  Š ‹`
` 7 7 " 7t
� œ � ´ Ð Ñ ‚% H

   0                          on 0,T
`
`
u7
/

œ Ð Ñ ‚ `H

 u 0,   u                      in .
7 !Ð Ñ œ H

and this problem satisfies (1.12.a,b). So the estimates of theorems 1.1, 1.2, 1.3 hold for  u . The7

"symmetrized problem" of (3.3) (see theorem 1.1) is:

 U   F   in 0,T  (3.4). ~ ~Š ‹`
` 7 7 $ "Î#t
� œ Ð Ñ Ð Ñ ‚# ? H

 U   0  on 0,T
~

7 "Î#œ Ð Ñ ‚ `H

 U 0,   v   in . ~ ~
7 ! "Î#Ð Ñ œ H

with the obvious meaning of F .
~

Ð Ñ7 $

 Since  g   is bounded in D, F f uniformly in D; then, by (1.5):" 7 Ä

  F f   uniformly in  D.
~ ~

Ð Ñ Ä7 $ $

So, by continuous dependence of the solution of (3.4) from the data, we have that:

 U t   U t   for all t 0,T . (3.5)² Ð Ñ ² Ä ² Ð Ñ ² − Ò Ó7 Ð Ñ Ð Ñ_ H _ H: :
"Î# "Î#

~ ~

 As to  u  we use now the continuous dependence  in the Hilbert space  introduced in7 F
(1.3). Since u  is bounded in , there exists w  such that, passing to a subsequence, u w7 7F F− Ä
weakly in . Then w solves problem (0.2), so that w u. Hence we know that for a subsequenceF ´
u  one has:7

 u t u t  in  and a.e.;   Du t   c, for a.e. t. (3.6)7 7
#

Ð ÑÐ Ñ Ä Ð Ñ Ð Ñ ² Ð Ñ ² Ÿ_ H _ H#

 Now we need the following lemma:

Lemma 3.3. Let h t u t .7 7
± ±

Ð Ñ œ Ð Ñ Ð Ñ*
2

H

If (3.6) holds, then  h t h t  for a.e. t. If, moreover, one knows that:7Ð Ñ Ä Ð Ñ

 u u  in D  and a.e. in D;  Du   c (3.7)7 7
#

Ð ÑÄ Ð Ñ ² ² Ÿ_ _# D

then  h h  in 0,T .7
#Ä Ð Ñ_

 To prove this lemma we need further results about rearrangements of functions in

H , namely:"ß#Ð ÑH

Lemma 3.4. Let u H , where  is a bounded Lipschitz domain of  n 2 . Then− Ð Ñ d Ð   Ñ"ß# 8H H

u H , and, if    denotes the sphere centred at the origin with measure , one~ ~ ~
− Ð Ñ ± ± �

loc

"ß# H H H %%

has:

    Du dx  c   Du dx~' '
H H
~

%

± ± Ÿ Ð Ñ ± ±# #%

for any positive , with c  depending on , n, , Q. Moreover, u  is absolutely continuous% % % HÐ Ñ ± ± *

in , .Ð ± ± � Ñ% H %

Remark 3.5. A well known theorem by Polya-Szego states that, if  v  is a nonnegative function in¨

H , then  v H , and:~ ~
! !
"ß# "ß#Ð Ñ − Ð ÑH H

 Dv   Dv .~² ² Ÿ ² ²# #

To get lemma 3.4 one has to consider a function u H  and apply to the positive and− Ð Ñ"ß# H

negative parts of  u u   the same reasoning used in the proof of Polya-Szego's theorem¨� Ð Ñ*
2

± ±H

given in Talenti . The  isoperimetric inequality in  is in this case the suitable tool. We' relative H
do not give account here of the details.
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Proof of lemma 3.3.  Let s u t s u t  s .   is absolutely continuous in9 9Ð Ñ œ Ð Ñ Ð Ñ � Ð Ñ Ð Ñ7
* *

Ð ± ± � Ñ �% H % %,  for any  0. Then one has:

 s   d   2 d. .9 9 5 5 9 9 5 5Ð Ñ Ÿ Ð Ñ � ± Ð Ñ ±# # w
± ±�

± ±� ± ±�1

2H % % %

H % H %' '
for any s , . So we have, for s :− Ð ± ± � Ñ œ ± ±% H % H"

#

 h t h t   u t  u t  d   (3.8).± Ð Ñ � Ð Ñ ± Ÿ ± Ð Ñ � Ð Ñ ± �7 7
# #

± ±�

± ±�1

2
* *

H % %

H %' 5

  2 u t  u t  t  t  d   A B ..� ± Ð Ñ � Ð Ñ ± ± Ð Ñ � Ð Ñ ± ´ �'
%

H %

5 5

± ±�
7 7 7

`
` `

`* * * *u u7 5

 Now, for m , A 0 by (1.5) since u t u t  in . By Holder's inequality:Ä _ Ä Ð Ñ Ä Ð Ñ Ð Ñ7 7
#_ H

(3.9)B   2 t  t  d .
7

± ±� "�"Î8 `
` `

`
#

"Î#

Ÿ Ð Ð Ñ � Ð Ñ ÑÐ Ñ	 
' Š ‹
%

H %

5 5
5 5 5u * *u7

  u t  u t  d   2C D .. .	 
' Š ‹
%

H %± ±� �"�"Î8
7 7 7

#
"Î#

5 5 5Ð Ð Ñ � Ð Ñ ÑÐ Ñ ´* *

 D   c u t u t  , by (1.5).7 7 #Ÿ Ð Ñ ² Ð Ñ � Ð Ñ ²%

 C   t  d7
± ±� "�"Î8 `

`

#
"Î#

Ÿ Ð Ð Ñ Ð Ñ �	 
' Š ‹
0

u *H %

5
5 5 57

  t  d� Ð Ð Ñ Ð Ñ œ	 
' Š ‹
0

u *± ±� "�"Î8 `
`

#
"Î#

H %

5
5 5 5

     Du t dx      Du t dx   (by lemma 3.4)~ ~œ ± Ð Ñ ± � ± Ð Ñ ± ŸŠ ‹ Š ‹' '
H H
~ ~

% %
7

# #
"Î# "Î#

  c     Du t dx      Du t dx     const.Ÿ Ð Ñ ± Ð Ñ ± � ± Ð Ñ ± Ÿ% 	 
Š ‹ Š ‹' '
H H7

# #
"Î# "Î#

So:

 B   const. u t  u t (3.10).
7 7 #Ÿ ² Ð Ñ � Ð Ñ ²

and h t h t  pointwise. Moreover, if (3.7) holds, integrating in  t inequalities (3.8), (3.9)7Ð Ñ Ä Ð Ñ
one gets convergence in 0,T . Then the proof is complete. _#Ð Ñ �

 Now from (3.5), (3.6) and lemma 3.3 we can pass to the limit in (1.9) (by Fatou's

theorem) and obtain theorem 1.1 in tha case of smooth coefficients and data. In the same way it

follows (1.11), i.e. proposition 1.3, since  F f  in D . As to theorem 1.2, we already know,7
:Ä Ð Ñ_

by remark 2.2, that it holds when coefficients and data are smooth. So what we have now to do is

to relax the assumption of smoothness in deriving theorems 1.1, 1.2, 1.3..

 However, this fact requires no new idea, so a detailed proof is omitted: we can regularize

coefficients and data; then by continuous dependence of the solution in suitable spaces and

applying lemma 3.3 we get theorems 1.1-1.3 in the general case. Note that the full statement of

lemma 3.3 is needed in order to pass to the limit in the energy estimate.
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Remark 3.6.  Let us suppose that  is a ball, A is the laplacian, f, u  are nonnegative, radiallyH !

symmetric and decreasing functions vanishing outside a ball of measure /2. Then, by± ±H
reviewing the proof of theorem 1.1, one can see that:

 u t u t U t" #Ð Ñ � Ð Ñ œ Ð Ñ* * *

holds, provided that U is defined as the solution of a problem (1.8) with n c   (i.e. we.# œ Ò Ó8
"Î8 �"

replace Q with the isoperimetric constant of ). In consequence one has:d8

 u h t   U t² Ð � ÑÐ Ñ ² œ ² Ð Ñ ²" "

and:

 sup u t,   inf  u t,   sup U t .. .

   
~H H H

Ð Ñ � Ð Ñ œ Ð Ñ

"Î#

 It is an open question to find an example in which all the level sets of the functions u  are3

optimal with regards to the relative isoperimetric inequality, so that the above identities may hold

for the function U defined via the "right" constant Q. This example is still lacking even in the

elliptic case.
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